Tirages de p éléments dans un ensemble $E = \{a_1, ..., a_n\}$ (n éléments)

	Avec Remise	Sans Remise
Avec Ordre	. Application de $\{1,\dots,p\}$ dans E. $. \frac{p\text{-uplet}}{p\text{-uplet}}(x_1,\dots,x_p) \text{ d'éléments de E.}$ n^p	. Application injective de $\{1,\dots,p\}$ dans E. . p -uplet (x_1,\dots,x_p) d'éléments distincts de E, appelé Arrangement. $A_n^p = \frac{n!}{(n-p)!} \text{si } 1 \leq p \leq n$. Si $p=n$, on parle de Permutation. Il y en a $n!$. (\star)
Sans Ordre	. n -uplet d'entiers (c_1,\ldots,c_n) telle que $c_1+\ldots+c_n=p\ ,$ où c_i = nombre de fois où a_i est tiré. $\binom{p+n-1}{p}=\binom{p+n-1}{n-1}$ Combinaison avec répétitions	. Sous-ensemble (ou partie) à p éléments de E , appelé Combinaison. $\binom{n}{p} = \frac{n!}{p!(n-p)!} \text{si } 0 \leq p \leq n$

(\star) Le nombre de mots contenant n_1 fois la lettre a_1 , n_2 fois la lettre a_2 ,, n_m fois la lettre a_m est égal à $\frac{n!}{n_1!n_2!...n_m!} \text{ avec } n = n_1 + ... + n_m.$

$$\frac{n!}{n_1!n_2!\dots n_m!} \text{ avec } n = n_1 + \dots + n_m$$

On parle d'Arrangements avec répétitions d'ordre (n_1,\ldots,n_m) ou Anagrammes.