OCM 6:

Herédité mitochondriale:

- A Il existe une distribution verticale des cas sur un arbre généalogique
- B-La descendance d'un homme atteint n'est pas atteinte
- C-La descendance d'une femme atteinte n'est pas atteinte
- D-Les hommes et les fémmes sont également atteints
- E-L'hétéroplasmie rend compte du fait que les ADN de toutes les mitochondries ne sont pas mutés.

OCM

Dans le cadre de l'hérédité multifactorielle pour une pathologie donnée:

- A il existe un excès de cas familiaux
- B le risque pour la fratrie du propositus est bien plus faible que dans le cadre d'une transmission mendélienne
 - C la consanguinité n'a pas d'incidence
- D la maladie est d'autant plus rare chez les sujets apparentés aux malades qu'elle est rare dans la population générale
- E-lorsque le sex ratio des sujets atteints s'éloigne fortement de l'unité le risque relatif est moins élevé quand la maladie est transmise par le parent dont le sexe est à priori moins concerné.

OCM 8:

- A Pour des locus rapprochés la fréquence de recombinaison reflète la distance relative entre les deux locus sur le chromosome
- B Une fréquence relative de recombinaison de 2% entre noux locus correspond à une distance relative de 2 centimorgan.
 - C Un centimorgan correspond à environ 100000 paires de bases
 - D'-Le lod score permet d'apprécier la distance entre deux locus
 - E-Un led score supérieur à 4 est en faveur de la liaison de deux locus avec une probabilité de 4000 contre

Nucléosides - Nucléotides et dérivés

QCM9:

- A -Les bases puriques sont l'adénine et la guanine
- B Les base pyrimidiques sont la cytosine, la thymine et l'uracile
- C La thymine est un uracile méthylé
- D * L'uracile est une cytosine désaminée
- E-Le noyau purine contient 7 atomes de carbone

QCM 10:

- A-Les nucléotides sont des esters phosphoriques de nucléoside
- B Les désoxyribonucléotides 2 phosphate sont des dérivés physiologiques des nucléotides

大,但是这种主义,我们就是我们的是一个人,也可以不是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,也不是一个人,也不是 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

- C Acide adenylique et AMP sont des synonymes
- D Acide adénylique et dAMP sont des synonymes
- E Les didésoxy ribonucléotides sont des molécules physiologiques

ADN nucléaire humain

OCM 11:

A-Les deux brins sont des polymères de ribonucléotides A.C.G.T

B - Un brin est orienté 5' > 3', l'autre est orienté 3' > 5'

C-Chaque brin contient la totalité de l'information génétique

D- Le brin sens est celui qui sera transcrit

E-Un pas de la double hélice contient 12 paires de bases dans la forme B

OCM 12:

A L'appariement GC est deux fois plus solide que l'appariement AT

B-Les appariements internucléotidiques se font par des liaisons hydrogènes qui s'établissent entre les purines d'une part et les pyrimidines d'autre part

C-Les liaisons phosphodiesters entraînent des contraintes spatiales qui expliquent l'organisation régulière de la double hélice

D-La somme des purines est égale à la somme des pyrimidines

E-Le nombre de bases aminées est égal au nombre de bases hydroxylées

QCM 13:

- A On peut apprécier la concentration d'une solution d'ADN en mesurant son absorbance à 260 nm
- B + Liabsorbance d'une solution d'ADN est maximum au voisinage du Tm

C-L'ADN en solution précipite si l'on augmente la force ionique.

- D Dans une solution donnée, un fragment d'ADN a un Tm caractéristique qui peut se calculer en fonction de la séquence
- E-Dans une solution à basse force ionique un fragment d'ADN a un Tm plus bas que dans une solution à forte concentration en sel

OCM 14:

Organisation linéaire d'un gène codant une protéine

- A Le site de départ de la transcription est repérable par un codon ATG
- B Le promoteur est habituellement situé du côté 5' du gène
- C Le site de début de la traduction peut être dans un intron
- D Le signal AATAAA est habituellement en aval du codon stop
- E Le codon stop peut être dans un intron

OCM 15:

Organisation linéaire de l'ADN

- A Les gênes domestiques ne sont transcrits qu'après une induction
- B Les gènes codants une proteine sont le plus souvent uniques
- C Les rétroposons ne sont normalement pas présents dans le génome humain
- D. Les séquences Alu sont traduites dans certains types cellulaires
- E Les génés codant les RNA non messagers se situent surtout au niveau des bras courts des chromosomes acrocentriques

TO COMPANY THE PROPERTY OF THE CONTROL OF THE PROPERTY OF THE

ARN

OCM 16:

A-Les ARN ribosomiques se retrouvent tous dans les ARN 18s et 28s.

B - Les ARN ribosomiques natifs subissent une maturation par clivages successifs

C-Les ARN messagers sont les plus abondants dans une cellule

D-Les ARN de la série U sont nucléaires

E-Les ARN mitochondriaux sont uniquement des messagers.

OCM 17:

Les ARN de transfert :

A - sont riches en nucléotides à bases non usuelles

B - lient leur aminoacide sur un nucléotide 3 terminal à adénine

C - ont chacun une composition particulière en nucléotides définissant leur spécificité

D - ont une structure tertiaire repliée qui permet de mettre en contact la boucle de l'anticodon et le bras accepteur

E-subissent une maturation chez les encaryotes:

Transcription

QCM 18: Operen lactose

A - DARN polymérase se fixe sur le répresseur

B - En presence de lactose l'opérateur est modifié par transition allostérique

C-La présence de CAP, une protéine activatrice, est nécessaire pour que l'opéron lactose soit actif

D - Tant qu'il existe du glucose dans le milieu de culture l'opéron la tose est inactif

E - Quand il existe du lactose et pas de glucose dans le milieu de culture l'opéron lactose est actif

OCM 19:

Régulation de la transcription procaryote

A - Dans la régulation négative le répresseur fixé empêche la transcription

B - Dans la régulation négative l'addition du ligand active le gens en décrochant le répresseur

C - Dans la régulation positive Pactivateur fixé favorise la transcription

D - Dans la régulation positive le retrait du ligand mactive le gène en décrochant l'activateur

E-L'addition d'un ligand inhibiteur peut inactiver un gene soit en retirant de l'ADN un activateur soit en provoquant la fixation d'un represseur