

Année Universitaire 2022 - 2023

Unité d'Enseignement spé odontologie

Épreuve Terminale

Correction détaillée

Méline GIRARD Robin CHANEL

Tutorat-Lyon-Est

Correction-Annale-Odontologie-MEAG-22-23

Page 1 sur 6

Correction rapide

Questions	<u>Réponses</u>
1	ABDE
2	ABCDE
3	D
4	BCE
5	BE
6	ABCDE
7	BC

Question 1: ABDE

A propos du séquençage Sanger, quelle(s) est(sont) la(les) proposition(s) exacte(s)?

- A. Il est aussi appelé séquençage par terminaison prématurée.
- B. Il nécessite d'avoir amplifié au préalable la région d'intérêt.
- C. Il permet d'étudier simultanément un grand nombre de gènes.
- D. Il utilise des désoxy-nucléotides (dNTP).
- E. Il utilise des didésoxy-nucléotides (ddNTP).

A VRAI

B VRAI Le brin matrice qu'on utilise provient d'un produit de PCR, la séquence d'ADN cible a donc bien été amplifiée avant d'être séquencée.

C FAUX C'est plutôt le NGS qui permet d'étudier simultanément un grand nombre de gènes.

D VRAI Ils correspondent à 99.9% des nucléotides incorporés, ils permettent la liaison avec le nucléotide suivant lors de la formation du nouveau brin.

E VRAI Ils représentent 0.1% des nucléotides incorporés, ils sont marqués d'une couleur spécifique et permettent de terminer un fragment.

Question 2: ABCDE

A propos des puces à ADN, quelle(s) est(sont) la(les) proposition(s) exacte(s)?

- A. Elles sont constituées d'un support solide (verre, silicium).
- B. Elles utilisent des sondes oligonucléotidiques complémentaires des séquences-cibles.
- C. Elles peuvent permettre de quantifier l'expression de gènes d'intérêt.
- D. Ce sont des méthodes comparatives.
- E. Elles nécessitent le marquage préalable des ADN hybridés.

A VRAI C'est sur ce support que se fixent les sondes oligonucléotidiques complémentaires aux ADN et ARNm à détecter.

B VRAI

C VRAI Elles permettent effectivement de quantifier de manière différentielle l'expression de différents transcrits chez un patient.

D VRAI On compare l'expression des transcrits d'un témoin sain (couleur verte) à celle des différents transcrits du patient qui nous intéresse (en rouge). Cela permet de comparer par exemple une tumeur à du tissu sain.

E VRAI

Question 3 : D

A propos des techniques de validations fonctionnelles, quelle(s) est (sont) la(es) réponse(s) juste(s) ?

- A. La mise en évidence d'un effet pathogène est suffisante pour classer un variant comme pathogène.
- B. Encore aujourd'hui, les modèles animaux se limitent au modèle murin.
- C. La transfection transitoire de cellules humaines est une technique abandonnée.
- D. L'absence d'effet du variant sur la physiologie du modèle cellulaire utilisé n'est pas suffisant pour classer ce variant comme bénin ou probablement bénin.
- E. L'utilisation de cellules souches induites pluripotentes est devenue le modèle de choix le plus répandu.

A FAUX Chaque argument est un poids parmi les autres, il faut plusieurs arguments pour conclure.

B FAUX Aujourd'hui l'utilisation de modèles animaux fait grandement débat mais est encore utilisée avec par exemple l'utilisation de primate, de rongeur, de C.Elegans ou même de poissons.

C FAUX La transfection transitoire est l'étude fonctionnelle, la plus facile et la moins chère qui à, certe, certaine limite mais qui est encore utilisée aujourd'hui, elle est par exemple utilisée pour l'hémophilie.

D VRAI Exactement, le modèle cellulaire n'est pas parfait et de plus ce n'est qu'un argument parmi les autres. Dans le cours il y a l'exemple d'un variant de classe 5 dont la pathogénicité est certaine, mais qu'aucune modification ne se passe chez le ver avec la modification.

E FAUX Ce n'est pas le modèle de choix car en pratique on ne peut pas donner tous les types cellulaires, seulement les cellules musculaires, osseuses, neurones, cardiomyocytes et globules rouges.

Question 4: BCE

Suite à une suspicion clinique de trisomie 21, quel(s) examen(s) vous permettrai(en)t de connaître la forme cytogénétique de trisomie 21 ?

- A. Un séquençage d'exome.
- B. Une CGH-array.
- C. Une FISH sur noyaux interphasiques.
- D. Un séquençage ciblé (Sanger).
- E. Un caryotype.

A FAUX En séquençant d'exome on ne séquence que les exons et non les chromosomes.

B VRAI On peut voir des duplications, ici le chromosome 21 apparaîtra vert.

C VRAI Avec une sonde qui se fixe sur le chromosome 21, on verra 3 chromosomes (les 21) fluorescents, signifiant une trisomie 21.

D FAUX La sanger permet de voir une modification ciblée, une altération à un endroit précis, on ne pourra donc pas voir la trisomie 21.

E VRAI Avec le caryotype nous pouvons les chromosomes et les anomalies de nombres, il est donc possible de connaître la trisomie

Question 5: BE

A propos des microsatellites, quelle(s) est(sont) la(les) proposition(s) exacte(s)?

- A. Ils sont amplifiés par PCR à l'aide d'amorces non spécifiques.
- B. Une des amorces permettant leur amplification est généralement marquée par un fluorochrome.
- C. La variation du nombre de répétition du motif le constituant peut être à l'origine de pathologie.
- D. Leur analyse est une méthode directe pour l'analyse d'une maladie génétique donnée dans le cadre d'un diagnostic prénatal.
- E. Ils peuvent être intra géniques.

A FAUX Les amorces sont spécifiques de la région concernée

B VRAI

C FAUX Les microsatellites ne sont pas des mutations à l'origine de la pathologie mais seulement des marqueurs entourant la lésion d'intérêt.

D FAUX L'étude des microsatellites est une approche indirecte (HYPER IMPORTANT !!!)

E VRAI

Question 6: ABCDE

Concernant le séquençage par technique de 2ème génération, quelle(s) est(sont) la(les) proposition(s) exacte(s) ?

- A. Le séquençage du génome nécessite une fragmentation de l'ADN génomique.
- B. Pour l'étude des transcrits une fragmentation de l'ARN est nécessaire.
- C. Pour l'étude des transcrits une conversion en cDNA par reverse transcription est nécessaire.
- D. Des millions de séquences sont réalisées en parallèle simultanément sur un support solide de type 'flowcell'.
- E. Des barcodes peuvent être ajoutés aux adaptateurs permettant l'étude de plusieurs patients simultanément.

A VRAI On va fragmenter notre ADN génomique en des fragments de 150 à 200pb par sonication (ultrasons) ou par réaction enzymatique pour pouvoir ensuite les séquencer.

B VRAI Comme pour l'ADN génomique 😊

C VRAI En effet, car l'ARN n'est pas séquençable en tant que tel.

D VRAI Cette étude en parallèle de nombreux fragments est un des avantages du NGS.

E VRAI Ces barcodes (qq pb en plus rajoutés aux adaptateurs) vont nous permettre de différencier les ADN de chaque patient et donc permettre l'étude de plusieurs patients en même temps

Question 7: BC

A propos des critères d'interprétation des variants génétiques, quelle(s) est (sont) la(es) réponse(s) juste(s) ?

- A. Après interprétation, les variations sont classées en 5 classes notées de A à E.
- B. Les recommandations internationales proposent des critères regroupés en 7 classes d'arguments de pathogénicité.
- C. L'utilisation de bases de données permet d'approcher la fréquence du variant dans la population générale.
- D. La base de données GnomAD répertorie des données de génomes réalisés chez des patients porteurs d'une maladie congénitale.
- E. La conservation nucléotidique à travers les différentes espèces est une donnée superflue.

A FAUX Les variants sont classés en 5 classes de 1 à 5.

B VRAI Exactement, les 7 classes s'appuient sur des données épidémiologiques, structurales, bibliographiques, la présence de variations associées, cliniques, de ségrégation et fonctionnelles.

C VRAI Les bases de données de la population (contrôle), permettent effectivement de déterminer la fréquence allélique du variant dans la population générale.

D FAUX La base de données GnomAD répertorie des données de génomes réalisés chez des personnes ne souffrants pas de pathologie donnée, les génomes sont réputés sains.

E FAUX En effet, s'il y a conservation de l'acide aminé à travers les espèces cela signifie qu'il a un rôle très important pour le gêne ce n'est donc pas une donnée superflue.

