Résumé – Transferts transmembranaires

I. Expression de la concentration des solutions

Solution = mélange homogène en phase condensée (liquide ou solide).

A. Dépendantes de la température

$$C_p = \frac{m}{V}$$

- C_p = concentration pondérale en g.L⁻¹. USI : kg.m⁻³ ;
- m = masse en g. USI : kg ;
- V = volume en L. USI : m³.

$$C_{\rm m} = \frac{m_{solut\acute{e}}}{M_{solut\acute{e}} \cdot V} = \frac{n_{solut\acute{e}}}{V}$$

- C_m = concentration molaire = molarité en mol.L⁻¹. USI : mol.m⁻³ ;
- m_{soluté} = masse du soluté en g. USI : kg ;
- M_{soluté} = masse molaire du soluté en g.mol⁻¹. USI : kg.mol⁻¹;
- $V = volume en L. USI : m^3$;
- n_{soluté} = quantité de matière du soluté en mol.

$$C_{eq} = z.C_{m}$$

- C_{eq} = concentration équivalente ou de charges électriques en Eq.L⁻¹;
- z = électrovalence de la molécule de soluté;
- C_m = molarité en mol.L⁻¹ ou en mol.m⁻³.

B. Indépendantes de la température

$$Molalité = \frac{n_{soluté}}{m_{solvant}}$$

- Molalité en mol.kg⁻¹;
- n_{soluté} = quantité de matière de soluté en mol ;
- m_{solvant} = masse de solvant en kg.

$$\mathsf{F} = \frac{n_1}{n_1 + n_0}$$

- F = fraction molaire, sans unité;
- n₁ = quantité de matière du soluté en mol ;
- $n_1 + n_0 = quantité de matière totale en mol.$

$$\tau = \frac{m_{solut\acute{e}}}{m_{solut\acute{e}} + m_{solvant}}$$

- τ = titre massique, sans unité;
- m_{soluté} = masse du soluté en g ou kg ;
- m_{solvant} = masse du solvant en g ou kg.

II. Diffusion en phase aqueuse

A. Première loi de Fick

$$\frac{dm}{dt} = -D.S.\frac{dC}{dx}$$

- dm/dt = débit de matière ;
- D = coefficient de diffusion (système, température) ;
- S = surface d'échange (somme des surfaces des pores = surface de contact entre les 2 compartiments);
- dc/dx = gradient de concentration entre les deux compartiments.

B. Flux de matière

$$J = \frac{dm}{S.dt} \beta = -D \frac{dC}{dx} \beta$$

- J = flux de matière = coefficient de partage entre deux liquides non miscibles (en mol.m⁻².s⁻¹);
- D = coefficient de diffusion (système, température) ;
- S = surface d'échange (somme des surfaces des pores = surface de contact entre les 2 compartiments);
- dC/dx = gradient de concentration entre les deux compartiments ;
- dm/dt = débit de matière.

C. Coefficient de diffusion (soluté sphérique)

$$D = \frac{kT}{6\pi\eta r} = \frac{\Delta l^2}{2\Delta t}$$

- D = coefficient de diffusion (en cm².s⁻¹, SI : m².s⁻¹);
- kT = force d'agitation thermique :
 - k = constante de Boltzmann = $\frac{R}{Na}$ = 1,38 \times 10⁻²³ J. K⁻¹ ;

- T = température en K ;
- $F = 6\pi\eta r$ = formule de Stockes-Einstein (f = friction, η = viscosité et r = rayon de la sphère en cm);
- ΔI = distance parcourue en cm;
- Δt = temps de parcours en s.

4. Membranes

- Membranes semi-perméables (comparable aux parois cellulaires) : passage uniquement du solvant;
- Membranes dialysantes (comparables aux capillaires) : passage de solvant et petites molécules de PM inférieur à 1 000 Da.

III. Propriétés colligatives des solutions

Solution : comme si présence des **molécules de solutés** limitait la **liberté** des **molécules de solvant**.

Pression osmotique d'une solution = pression hydrostatique à exercer sur la solution pour empêcher le solvant pur de traverser la membrane. Seuls les solutés non diffusables participent à cette pression.

A. Abaissement du point de congélation

Cryoscopie (étude du point de congélation des solutions) : plus difficile de congeler un solvant avec espèces dissoutes qu'un solvant pur. Pour les solutions aqueuses → **Loi de Raoult**.

$$\Delta T_f = -K_c \times C_m$$

- ΔT_f = point de congélation en K ;
- K_C = coefficient cryoscopique (K_C vaut 1,86 dans le cas de l'eau);
- $C_m = \frac{C_p}{M}$ ($C_p = \text{concentration pondéral}$, $M = \text{masse molaire en g.mol}^{-1}$).

NDLR – Le « moins » devant K_C sert à montrer qu'il existe un abaissement. Dans les calculs, **il sera inutile** et vous pourrez utiliser une **valeur absolue**.

B. Loi de Pfeffer Van't Hoff

$$\pi = C_{osmotique}RT$$

- π = pression due à l'élévation du volume, égale à la pression osmotique à l'équilibre en Pa;
- C_{osmotique} = concentration osmotique en osmol.m⁻³;
- R = constante universelle des gaz parfaits = 8.314 J.mol⁻¹.K⁻¹;
- T = température en K.

$$\pi = 22, 4 \times \Delta C$$

- π = surpression engendrée dans le compartiment le plus concentré en atm ;
- ΔC = différence de concentration entre les deux compartiments en mol.L⁻¹.

C. Osmolarité

Concentration en particules « osmotiquement actives » dans une solution = toutes les particules (dissociées ou non) rapportées à un volume de solvant :

Osmolarité =
$$[1 + (p - 1).\alpha] \times Molarité$$

- α = coefficient de dissociation ;
- p = nombre d'ions produits par cette dissociation;
- Molarité en mol.L⁻¹.

Osmolarité plasmatique ≈ 0,290 Osm/L, soit 290 mOsm/L.

$$1 \, mOsm. L^{-1} = 1 \, Osm. m^{-3}$$

Solution **isotonique** si **Cosm = 0, 290 osm/L**.

Solution **hypotonique** si **Cosm** < **0,290 osm/L** → **gonflement** du GR: **turgescence** voire **hémolyse** si gonflement trop important.

Solution hypertonique si Cosm > 0,290 osm/L \rightarrow le GR se vide en eau : plasmolyse.

↑ Iso-osmolaire ≠ Isotonique!

4. Travail osmotique

Au cours de la diffusion en phase aqueuse, les molécules se détendent :

$$W_{1\to 2} = nRT \ln \left(\frac{\pi_2}{\pi_1}\right) = nRT \ln \left(\frac{c_2}{c_1}\right)$$

- $W_{1 \rightarrow 2}$ = travail osmotique en J;
- n = quantité de matière en mol ;
- R = constante universelle des gaz parfaits = 8.314 J.mol⁻¹.K⁻¹;
- T = température en K;
- π_1 = pression initiale osmotique en Pa;
- π_2 = pression finale osmotique en Pa;
- C₁ = concentration osmotique initiale en osmol.L⁻¹;
- C₂ = concentration osmotique finale en osmol.L⁻¹.

IV. Transfert de molécules chargées à travers les membranes

1. Équilibre de Donnan

Deux conditions à respecter :

 Électroneutralité des compartiments. On a (concentrations de charges électriques donc ici exprimées en Eq ou mEq) :

Dans le compartiment 1 : z[R^{z-}] + [Cl⁻] = [Na⁺]

Dans le compartiment 2 : [Cl⁻] = [Na⁺]

 Relation de Donnan : les produits des concentrations des molécules diffusibles au sein de chaque compartiment sont égaux :

$$[Na^{+}]_{1} \times [Cl^{-}]_{1} = [Na^{+}]_{2} \times [Cl^{-}]_{2}$$

2. Pression oncotique

$$\Delta \pi = \Delta C \times RT$$

- $\Delta \pi$ = pression oncotique en Pa;
- ΔC = différence d'unités osmotiquement actives (capables d'attirer du solvant) en mM;
- R = constante universelle des gaz parfaits = 8.314 J.mol⁻¹.K⁻¹;
- T = température en K.

La pression oncotique s'oppose à la pression hydrostatique.

Donnan avec une protéine non diffusible non-chargée P : le résultat donné par la formule $\Delta \pi = \Delta C \times RT$ est une pression osmotique.

Donnan avec une protéine **non diffusible chargée** P^{z-} : le résultat donné par la formule $\Delta \pi = \Delta C \times RT$ est à la fois une pression **osmotique** et une pression **oncotique** (la pression oncotique étant elle-même un type de pression osmotique).

3. Relation de Nernst

$$ddp \ membrane = \Delta \Psi = \Psi_2 - \Psi_1 = \frac{RT}{zF} \times ln\left(\frac{C_1}{C_2}\right)$$

- Ψ = différence de potentiel de membrane en Volt ;
- Ψ_1 = potentiel électrique dans le compartiment 1 ;
- Ψ_2 = potentiel électrique dans le compartiment 2 ;
- R = constante universelle des gaz parfaits = 8.314 J.mol⁻¹.K⁻¹;
- T = température en K;
- z = nombre de charges = nombre d'électrons échangés ;
- F = constante de Faraday = 2.4×10^{-8} C.mol⁻¹;
- C₁ = concentration dans le compartiment 1 en mol.L⁻¹;
- C_2 = concentration dans le compartiment 2 en mol.L⁻¹.