

METHODES ENERGETIQUES

METHODE DES ELEMENTS FINIS

Département Génie Mécanique et Productique Dimensionnement Des Structures

R5 MMP 02

Michel MASSENZIO

Méthodes énergétiques

- 1. Introduction
 - Ressort
 - Dualité forces-déplacements
- 2. Energie de déformation élastique
 - Principe de conservation de l'énergie
 - Travail des actions extérieures
 - Energie de déformation
- Flexibilité
 - Matrice de flexibilité
 - Théorème de Maxwell-Mohr
 - Théorèmes de Castigliano
 - Systèmes isostatiques / hyperstatiques
- 4. Rigidité
 - Matrice de rigidité

Méthode des éléments finis

- 1. Introduction
 - Notion de maillage, d'éléments finis et de nœuds
 - Degrés de libertés
 - Interpolation
- 2. Matrice de rigidité d'un élément libre
 - Matrice d'interpolation des déplacements
 - Matrice d'interpolation des déformations
 - Matrice des contraintes
 - Matrice de rigidité
- 3. MEF appliquée aux poutres
 - Sollicitations simples
 - Matrice de rigidité d'un élément libre
 - Transformation des coordonnées par rotation du repère
 - Assemblage
- 4. Exemple

METHODES ENERGETIQUES

Département Génie Mécanique et Productique Dimensionnement Des Structures

R5 MMP 02

Michel MASSENZIO

PLAN

Méthodes énergétiques

- 1. Introduction
 - Ressort
 - Dualité forces-déplacements

2. Energie de déformation élastique

- Principe de conservation de l'énergie
- Travail des actions extérieures
- Energie de déformation

3. Flexibilité

- Matrice de flexibilité
- Théorème de Maxwell-Mohr
- Théorèmes de Castigliano
- Systèmes isostatiques / hyperstatiques

4. Rigidité

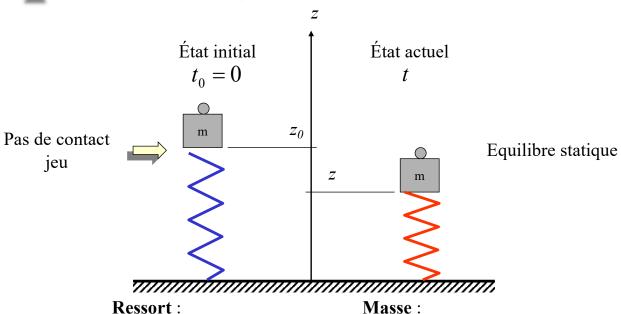
• Matrice de rigidité

3 **Dimensionnement Des Structures**

1. INTRODUCTION

1.1 Energie de déformation d'un ressort

Ressort : Structure élastique linéaire



Raideur K = 5000 N/m

Longueur à vide : $z_0 = 1 m$

Masse:

m = 10 kg

Hauteur initiale : $z_0 = 1 m$

Mise en équilibre (état actuel) :

Actions

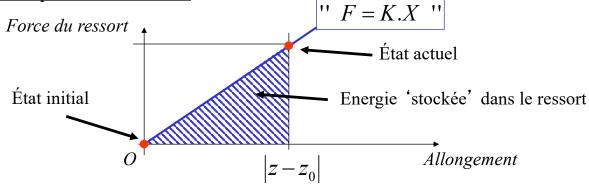
$$m \cdot g = K \cdot |z - z_0|$$

Poids de la masse *m*

'Allongement' du ressort

Déplacements
$$\left|z-z_0\right| = \frac{m \cdot g}{K}$$

Loi de comportement du ressort :



Dimensionnement Des Structures

5

1. INTRODUCTION

Energie potentielle de la masse :

État initial: $W_0^m = 1/2 \cdot m \cdot g \cdot z_0$

État actuel: $W^m = 1/2 \cdot m \cdot g \cdot z$

Différence : $\Delta W^m = 1/2 \cdot m \cdot g \cdot (z - z_0)$

 $\Delta W^{m} = 0.5 \cdot 10 \cdot 10 \cdot 0.02 = 1 Joule$

Energie potentielle du ressort :

État initial : $W^R = 0$

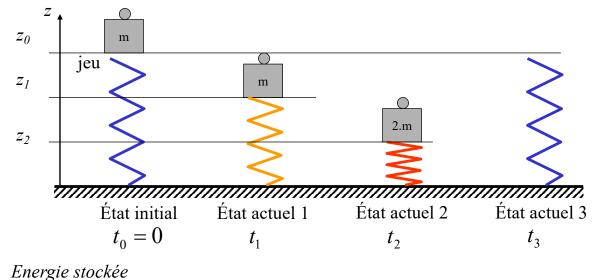
État actuel: $W^R = \frac{1}{2} \cdot K \cdot (z - z_0)^2$

 $\Delta W^R = 0.5 \cdot 5000 \cdot 0.02^2 = 1 Joule$

Différence d'énergie potentielle

Energie 'stockée' dans le ressort (sous forme élastique)

<u>Linéarité - Elasticité</u>:



masse

Retour à l'état initial

Dimensionnement Des Structures

7

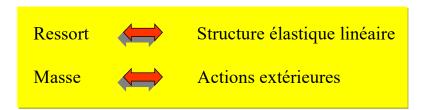
ressort

total

1. INTRODUCTION

1.2 Généralisation

Système considéré : Structure élastique linéaire



Energie stockée dans le ressort

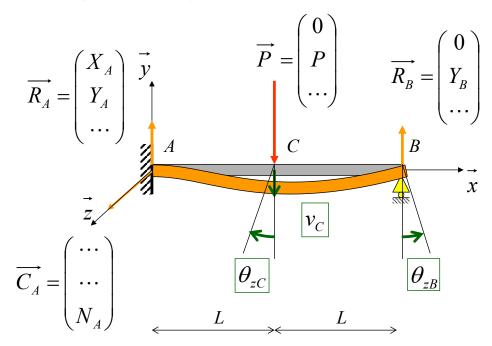
Energie de déformation élastique de la structure

Variation d'énergie potentielle de la masse

Travail ou énergie des actions extérieures

1.3 Dualité Forces-Déplacements

Exemple: structure plane



Inconnues
Statiques:

 X_A Y_A Y_B N_A

Inconnues Cinématiques:

 $egin{aligned} v_C \ heta_{zC} \ heta_{zB} \end{aligned}$

Dimensionnement Des Structures

9

1. INTRODUCTION

Méthode des forces

- Inconnues primaires : statiques
 (actions extérieures sur la structure réactions aux limites)
 - o Calcul des 4 inconnues statiques : X_A , Y_A , Y_B , N_A
- 2. <u>Inconnues secondaires : cinématiques</u> (déplacements)
 - o Calcul des 3 inconnues cinématiques : v_{C} , θ_{zC} , θ_{zB}

Méthode de Maxwell-Mohr (charge unité) Méthode de Castigliano

Méthode des déplacements

- 1. <u>Inconnues primaires : cinématiques</u> (déplacements)
 - o Calcul des 3 inconnues cinématiques : v_{C} , θ_{zC} , θ_{zB}
- 2. <u>Inconnues secondaires : statiques</u> (actions extérieures sur la structure réactions aux limites)
 - o Calcul des 4 inconnues statiques : X_A , Y_A , Y_B , N_A

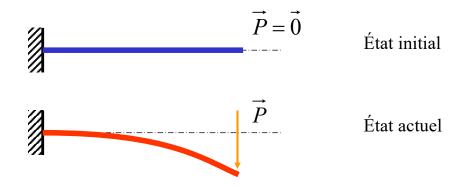
Méthode du déplacement unité Méthode des éléments finis

Dimensionnement Des Structures 11

2. ENERGIE DE DEFORMATION ELASTIQUE

2.1 Principe de conservation de l'énergie

2.1.1 Hypothèses

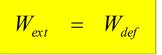


- Déformation isotherme (effets thermiques négligés)
- Dissipation interne négligée (amortissement)
- Action extérieure appliquée lentement (temps infini effets d'inertie négligés))

Dimensionnement Des Structures 13

2. ENERGIE DE DEFORMATION ELASTIQUE

2.1.2 Principe de conservation de l'énergie

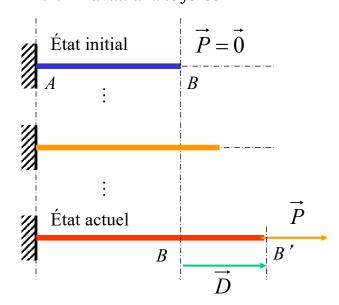


Travail des actions extérieures appliquées au système « Emmagasiné » « Stocké »

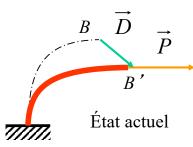
Energie de déformation élastique (travail des forces de cohésion)

2.2 Travail des actions extérieures

2.2.1 Travail d'une force



 $\overrightarrow{P} = \overrightarrow{0}$ État initial



 \overrightarrow{P} : Force appliquée au point B

 \overrightarrow{D} : Déplacement du point B

 \overrightarrow{P} & \overrightarrow{D} ne sont pas Forcément colinéaires

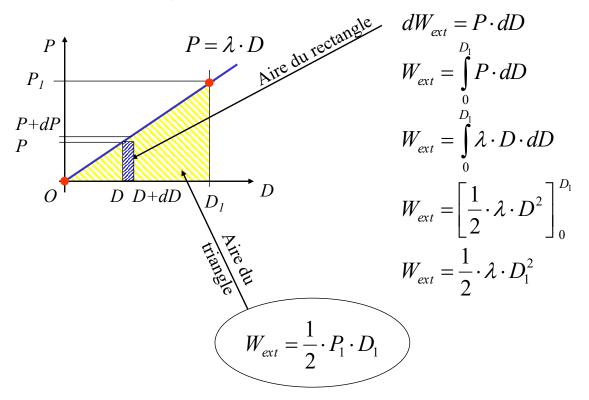
Dimensionnement Des Structures

15

IUT Lyon 1

2. ENERGIE DE DEFORMATION ELASTIQUE

Relation force / déplacement



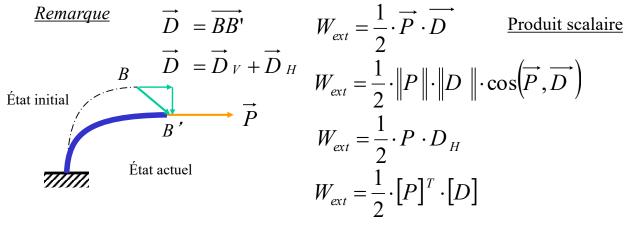
Synthèse: travail d'une force extérieure

$$W_{ext} = \frac{1}{2} \cdot \overrightarrow{P} \cdot \overrightarrow{D}$$

en Joules (J)

Force appliquée en B(N)

Déplacement correspondant (m) (seul le déplacement // à P est intéressant)

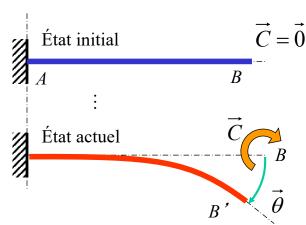


Dimensionnement Des Structures

17

2. ENERGIE DE DEFORMATION ELASTIQUE

2.2.2 Travail d'un couple



 \overrightarrow{C} : Couple appliqué au point B

 $\vec{\theta}$: Rotation du point *B*

Par analogie avec § 2.2.1:

$$W_{ext} = \frac{1}{2} \cdot \overrightarrow{C} \cdot \overrightarrow{\theta}$$

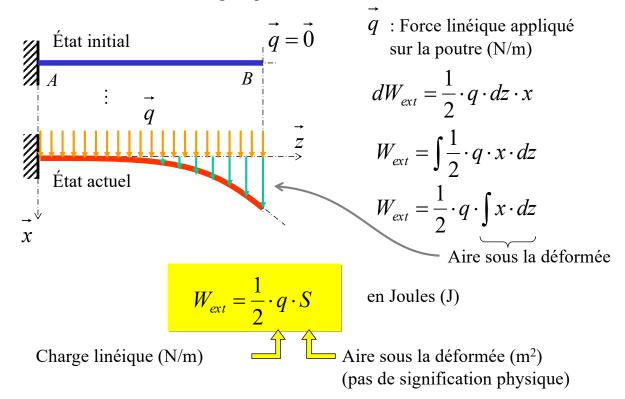
en Joules (J)

Couple appliqué en B (N.m) \bigcirc Rotation correspondante (rad)

Rotation correspondante (rad) (seule la rotation // à C est intéressante)

18

2.2.3 Travail d'une charge répartie



Dimensionnement Des Structures 19

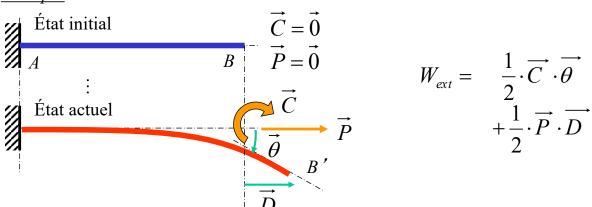
2. ENERGIE DE DEFORMATION ELASTIQUE

2.2.4 Superposition

$$W_{ext}^{total} = \sum_{i=1}^{n} W_{ext}^{i}$$

$$W_{ext}^{total} = \sum_{i=1}^{n} \frac{1}{2} \cdot [P_i]^T \cdot [D_i]$$

n : nombre d'action extérieures appliquées à la structure



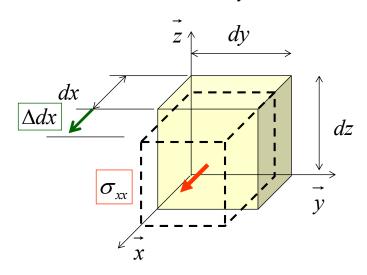
IUT Lyon 1

2. ENERGIE DE DEFORMATION ELASTIQUE

2.3 Energie de déformation élastique

2.3.1 Energie associée à une contrainte normale

Cube élémentaire : $dx \times dy \times dz$



Face avant : σ_{xx} constant

Force: $\sigma_{xx} \cdot dA$

$$\sigma_{xx} \cdot dy \cdot dz$$

Déplacement : $\Delta dx = \varepsilon_{xx} \cdot dx$

Avec:
$$dW_{def} = dW_{ext}$$

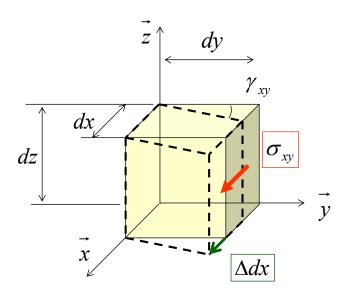
$$dW_{def} = \frac{1}{2} \cdot \sigma_{xx} \cdot \varepsilon_{xx} \cdot dV$$

Dimensionnement Des Structures

2. ENERGIE DE DEFORMATION ELASTIQUE

2.3.2 Energie associée à une contrainte tangentielle

Cube élémentaire : $dx \times dy \times dz$



Face droite: σ_{nv} constant

Force: $\sigma_{xy} \cdot dA$

$$\sigma_{xy} \cdot dx \cdot dz$$

Déplacement : $\Delta dx = \gamma_{xy} \cdot dy$

Avec: $dW_{def} = dW_{ext}$

$$dW_{def} = \frac{1}{2} \cdot \sigma_{xy} \cdot \gamma_{xy} \cdot dV$$

21

2.3.3 Cas général : énergie associée à un état de contrainte 3D

Etat de contrainte :

- 3 contraintes normales
- 3 contraintes tangentielles

les
$$[\sigma] = \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix}$$
Etat de déformation :
3 déformations normales
3 distorsions
$$[\varepsilon$$

Etat de déformation :

$$[\varepsilon] = \begin{vmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{vmatrix}$$

23

Théorème de superposition :

$$dW_{def} = \frac{1}{2} \cdot [\sigma]^T \cdot [\varepsilon] \cdot dV$$

Intégration sur le volume :

$$W_{def} = \frac{1}{2} \int_{V_0} [\sigma]^T \cdot [\varepsilon] \cdot dV$$

Dimensionnement Des Structures

2. ENERGIE DE DEFORMATION ELASTIQUE

Prise en compte de la loi de comportement (Hooke): $[\varepsilon] = [C]^{-1} \cdot [\sigma]$

$$W_{def} = \frac{1}{2} \int_{V_0} [\sigma]^T \cdot [C]^{-1} \cdot [\sigma] \cdot dV$$

$$[\sigma]^T \cdot [C]^{-1} \cdot [\sigma] =$$

$$\left[\sigma_{11} \quad \sigma_{22} \quad \sigma_{33} \quad \sigma_{12} \quad \sigma_{23} \quad \sigma_{31}\right] \cdot \frac{1}{E} \cdot \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1+\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1+\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1+\nu) \end{bmatrix} \cdot \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix}$$

$$[\sigma]^{T} \cdot [C]^{-1} \cdot [\sigma] \cdots$$

$$= [\sigma_{11} \quad \sigma_{22} \quad \sigma_{33} \quad \sigma_{12} \quad \sigma_{23} \quad \sigma_{31}] \cdot \frac{1}{E} \cdot \begin{bmatrix} \sigma_{11} - \nu(\sigma_{22} + \sigma_{33}) \\ \sigma_{22} - \nu(\sigma_{33} + \sigma_{11}) \\ \sigma_{33} - \nu(\sigma_{11} + \sigma_{22}) \\ 2(1 + \nu)\sigma_{12} \\ 2(1 + \nu)\sigma_{23} \\ 2(1 + \nu)\sigma_{31} \end{bmatrix}$$

$$= \frac{1}{E} \left(\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2 \right) - \frac{2\nu}{E} \left(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} \right) + \frac{1}{G} \left(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \right)$$

$$\begin{split} W_{def} &= \\ \frac{1}{2} \cdot \int_{V_0} \left(\frac{1}{E} \left(\sigma_{11}^2 + \sigma_{22}^2 + \sigma_{33}^2 \right) - \frac{2\nu}{E} \left(\sigma_{11} \sigma_{22} + \sigma_{22} \sigma_{33} + \sigma_{33} \sigma_{11} \right) + \frac{1}{G} \left(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \right) \right) \cdot dV \end{split}$$

25 **Dimensionnement Des Structures**

2. ENERGIE DE DEFORMATION ELASTIQUE

2.3.4 Cas particuliers

2.3.4.1 Energie associée à une contrainte plane

Etat de contrainte :

2 contraintes normales 1 contrainte tangentielle

$$[\sigma] = \begin{bmatrix} \sigma_{22} \\ \sigma_{33} = 0 \\ \sigma_{12} \\ \sigma_{23} = 0 \\ \sigma_{31} = 0 \end{bmatrix}$$

Etat de déformation :

Etat de déformation : 3 déformation : σ_{11} σ_{22} $\sigma_{33} = 0$ σ_{12} $\sigma_{23} = 0$ $\sigma_{23} = 0$

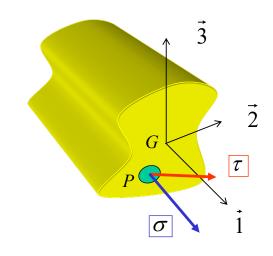
$$W_{def} = \frac{1}{2} \cdot \int_{V_0} \left(\frac{1}{E} \left(\sigma_{11}^2 + \sigma_{22}^2 \right) - \frac{2\nu}{E} \cdot \sigma_{11} \sigma_{22} + \frac{1}{G} \cdot \sigma_{12}^2 \right) \cdot dV$$

2.3.4.2 Energie associée à une poutre

Etat de contrainte :

1 contrainte normale 1 contrainte tangentielle

$$egin{aligned} egin{aligned} \sigma_{11} &= \sigma \ \sigma_{22} &= 0 \ \sigma_{33} &= 0 \ \sigma_{12} &= au \ \sigma_{23} &= 0 \ \sigma_{31} &= 0 \ \end{bmatrix}$$



$$W_{def} = \frac{1}{2} \cdot \int_{V_0} \left(\frac{\sigma^2}{E} + \frac{\tau^2}{G} \right) \cdot dV$$

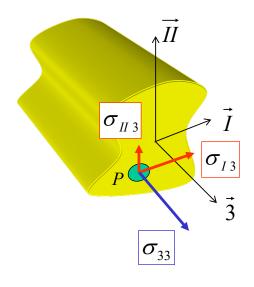
Dimensionnement Des Structures 27

3. FLEXIBILITE

3.1 Energie de déformation en fonction du torseur de section

3.1.1 Torseur de section

Dans les axes principaux d'inertie



Etat de contrainte :

• Contrainte normale

$$\sigma = \sigma_{33} = \frac{N_3}{A} - \frac{M_{II}}{I_{II}} \cdot x_I + \frac{M_I}{I_I} \cdot x_{II}$$
Traction / \uparrow compression

Flexion autour de II autour de I

Dimensionnement Des Structures 29

3. FLEXIBILITE

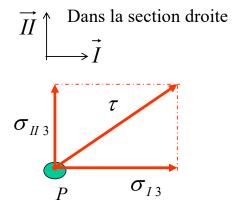
• Contrainte tangentielle

$$\sigma_{I3} = \frac{T_I}{A} - \frac{M_3}{I_G} \cdot x_{II}$$

$$\sigma_{II3} = \frac{T_{II}}{A} + \frac{M_3}{I_G} \cdot x_{I}$$
Effort Moment

tranchant de torsion

$$\tau = \sqrt{\sigma_{I3}^2 + \sigma_{II3}^2}$$



3.1.2 Energie de déformation

$$W_{def} = \frac{1}{2} \cdot \int_{V_0} \left(\frac{\sigma^2}{E} + \frac{\tau^2}{G} \right) \cdot dV$$

1 On reporte

$$\sigma^2 \leftarrow \sigma_{33}^2$$

$$\tau^2 \leftarrow \sigma_{I3}^2 + \sigma_{II3}^2$$

2 On décompose l'intégration

$$\iiint_{V} (\cdots) \cdot dV = \int_{L} (\cdots) \cdot \left[\iint_{A} (\cdots) \cdot dA \right] \cdot dz$$

Termes constants Termes fonction dans la section droite $\det x_I \& x_{II}$

Dimensionnement Des Structures

31

3. FLEXIBILITE

3 On identifie

$$A = \iint_A dA$$
 Aire de la section droite

$$Q_I = \int \int_A x_{II} \cdot dA = 0$$
 $Q_{II} = \int \int_A x_I \cdot dA = 0$ Moments statiques

$$I_I = \int \int \int_A x_{II}^2 \cdot dA$$
 $I_{II} = \int \int_A x_I^2 \cdot dA$ Inerties flexion

$$I_{III} = \iint_A x_I \cdot x_{II} \cdot dA = 0 \qquad I_G = \iint_A (x_I^2 + x_{II}^2) \cdot dA$$
Inerties torsion
Section circulaire

$$W_{def} = \frac{1}{2} \cdot \int_{V_0} \left(\frac{\sigma^2}{E} + \frac{\tau^2}{G} \right) \cdot dV$$

$$W_{def} = \frac{1}{2} \cdot \int_{V_0} \left(\frac{\sigma_{33}^2}{E} + \frac{\sigma_{I3}^2}{G} + \frac{\sigma_{II3}^2}{G} \right) \cdot dV$$

$$W_{def} =$$

$$\frac{1}{2} \cdot \int_{V_0} \left(\frac{\left(\frac{N_3}{A} - \frac{M_{II}}{I_{II}} \cdot x_I + \frac{M_{I}}{I_{I}} \cdot x_{II} \right)^2}{E} + \frac{\left(\frac{T_I}{A} - \frac{M_3}{I_G} \cdot x_{II} \right)^2}{G} + \frac{\left(\frac{T_{II}}{A} + \frac{M_3}{I_G} \cdot x_I \right)^2}{G} \right) \cdot dV$$

Dimensionnement Des Structures 33

3. FLEXIBILITE

$$W_{def}^{\sigma} =$$

$$\frac{1}{2} \cdot \int_{V_0} \left(\frac{1}{E} \cdot \left[\frac{N_3}{A} \right]^2 + \left(\frac{M_{II}}{I_{II}} \cdot x_I \right)^2 + \left(\frac{M_{I}}{I_I} \cdot x_{II} \right)^2 - 2 \cdot \frac{N_3}{A} \cdot \frac{M_{II}}{I_{II}} \cdot x_I + 2 \cdot \frac{N_3}{A} \cdot \frac{M_{I}}{I_I} \cdot x_{II} - 2 \cdot \frac{M_{I} \cdot M_{II}}{I_{I} \cdot I_{II}} \cdot x_I \cdot x_{II} \right] \right) \cdot dV$$

$$= \frac{1}{2} \cdot \int_{V_0} \left(\frac{1}{E} \cdot \left(\frac{N_3}{A} \right)^2 \right) \cdot dV = \frac{1}{2} \cdot \int_{L} \left(\frac{1}{E} \cdot \left(\frac{N_3}{A} \right)^2 \right) \cdot \left[\int_{A} dA \right] \cdot dz$$

$$= \int_{L} \frac{(N_3)^2}{2 \cdot E \cdot A} \cdot dz$$

3 : On identifie

Energie de déformation pour une poutre

$$W_{def} = \int_{L} \left(\frac{T_{I}^{2}}{2 G A} + \frac{T_{II}^{2}}{2 G A} + \frac{N_{3}^{2}}{2 E A} + \frac{M_{I}^{2}}{2 E I_{I}} + \frac{M_{II}^{2}}{2 E I_{II}} + \frac{M_{3}^{2}}{2 G I_{G}} \right) \cdot dz$$

Remarque:

composante du torseur de section au carré ''

$$W_{def} = \int_{L} \left(\cdots + \frac{Charge^{2}}{2 \cdot Materiau \cdot Inertie} + \cdots \right) \cdot dz$$

'' Elasticité du matériau : '' géométrie section droite : ''

E si contrainte normale G si contrainte tangentielle

A si force

I si couple

Dimensionnement Des Structures

35

3. FLEXIBILITE

Energie de déformation dans un treillis

Principe de superposition :

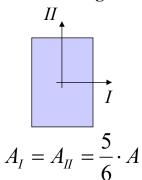
$$W_{def} = \sum_{i=1}^{nb \ poutres} W_{def}^{i}$$

3.1.3 Corrections éventuelles à apporter

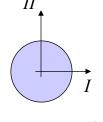
3.1.3.1 Cas du cisaillement

$$\frac{T_I}{A} \xrightarrow{T_I} \& \frac{T_{II}}{A} \xrightarrow{T_{II}} A$$
 Aire réduite par rapport à l'axe II

Section rectangulaire



Section circulaire



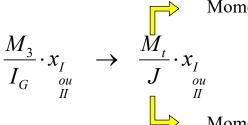
$$A_I = A_{II} = \frac{9}{10} \cdot A$$

Dimensionnement Des Structures

37

3. FLEXIBILITE

3.1.3.2 Cas de la torsion



Moment de torsion par rapport au centre de cisaillement

Moment d'inertie de torsion

<u>Centre de cisaillement</u>: point par lequel il faut faire passer les efforts pour qu'il n'y ait pas de torsion (si axe de symétrie : sur l'axe) Important dans le cas des profils minces ouverts

$$J = I_G$$
 Pour les sections circulaires sinon -> formulaires

$$M_t = M_3$$
 Pour les sections épaisses

3.2 Méthode de Clapeyron

3.2.1 Définition

Energie de déformation dans une poutre

$$W_{def} = \int_{L} \left(\frac{T_{I}^{2}}{2 G A} + \frac{T_{II}^{2}}{2 G A} + \frac{N_{3}^{2}}{2 E A} + \frac{M_{I}^{2}}{2 E I_{I}} + \frac{M_{II}^{2}}{2 E I_{II}} + \frac{M_{3}^{2}}{2 G I_{G}} \right) \cdot dz$$

Travail des actions extérieures :

$$W_{ext}^{Force} = \frac{1}{2} \cdot \overrightarrow{P} \cdot \overrightarrow{D}$$
 $W_{ext}^{couple} = \frac{1}{2} \cdot \overrightarrow{C} \cdot \overrightarrow{\theta}$

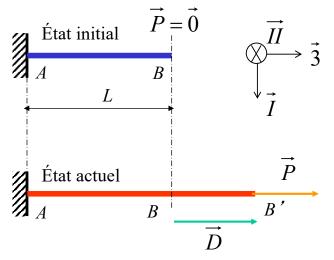
Principe de conservation de l'énergie :

$$W_{ext} = W_{def}$$

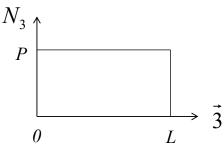
Dimensionnement Des Structures 39

3. FLEXIBILITE

3.2.2 Exemple 1



Torseur de section



 $T_I T_{II} M_I M_{II} M_3$: nuls

 $\stackrel{\textstyle op}{P}\;$: Force appliquée au point ${\it B}$

 $\stackrel{\frown}{D}$: Déplacement du point B

Energie de déformation

$$W_{def} = \int_{L} \left(\frac{N_3^2}{2 E A} \right) \cdot dz = \left(\frac{P^2}{2 E A} \right) \cdot \int_{0}^{L} dz$$

$$= \frac{P^2 \cdot L}{2 E A}$$

$$= \frac{1}{2} \cdot P \cdot D$$

$$= \frac{1}{2} \cdot P \cdot D$$

Travail des forces extérieures

$$W_{ext} = \frac{1}{2} \cdot \overrightarrow{P} \cdot \overrightarrow{D}$$
$$= \frac{1}{2} \cdot \overrightarrow{P} \cdot D$$

Conservation de l'énergie

Relation effort – déplacement associé

$$\frac{P^2 \cdot L}{2 E A} = \frac{1}{2} \cdot P \cdot D$$

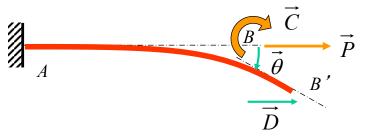
Soit:

$$P = \frac{E A}{L} \cdot D$$

41 **Dimensionnement Des Structures**

3. FLEXIBILITE

3.2.3 Exemple 2



Même démarche que exemple 1

$$W_{def} = \frac{P^2 \cdot L}{2 E A} + \frac{C^2 \cdot L}{2 E I_I}$$

$$W_{def} = \frac{P^2 \cdot L}{2 E A} + \frac{C^2 \cdot L}{2 E I_I} \qquad W_{ext} = \frac{1}{2} \cdot \overrightarrow{C} \cdot \overrightarrow{\theta} + \frac{1}{2} \cdot \overrightarrow{P} \cdot \overrightarrow{D}$$

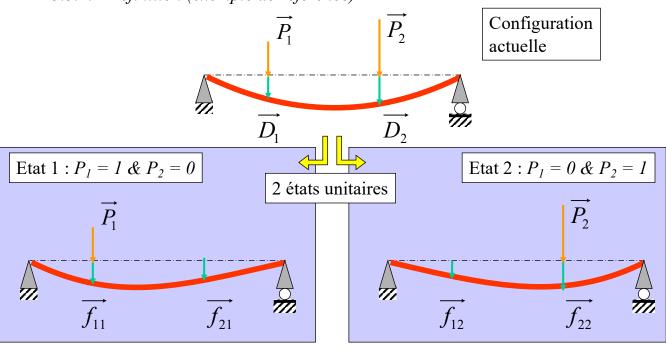
$$\frac{P^2 \cdot L}{2EA} + \frac{C^2 \cdot L}{2EI_I} = \frac{1}{2} \cdot C \cdot \theta + \frac{1}{2} \cdot P \cdot D$$

1 seule équation mais 2 actions & 2 déplacements associés

Clapeyron intéressant quand une seule action

3.3 Méthode de Maxwell - Mohr

- 3.3.1 Matrice de flexibilité ou matrice de souplesse
 - 3.3.1.1 Définition (exemple de référence)



Dimensionnement Des Structures

3. FLEXIBILITE

43

Notation

$$f_{ij}$$
 ou f_{ij} Déplacement en i

Dû à une action unitaire en j

Principe de superposition (système linéaire)

$$f_{21} \times P_1$$

$$+ f_{22} \times P_2$$

$$= D_2$$

Matrice de flexibilité

$$\begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \cdot \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$

Vecteur déplacements généralisés Vecteur charges généralisés

Généralisation à n actions extérieures sur une structure quelconque (linéaire) :

$$[D] = [f] \cdot [P]$$

Avec la matrice de flexibilité : carrée $(n \times n)$

 f_{ij} aussi appelé coefficient d'influence

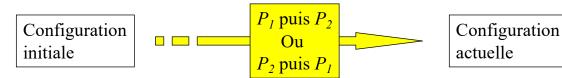
$$[f] = \begin{bmatrix} f_{11} & \cdots & f_{1n} \\ & f_{ij} & \\ f_{n1} & & f_{nn} \end{bmatrix}$$

Dimensionnement Des Structures

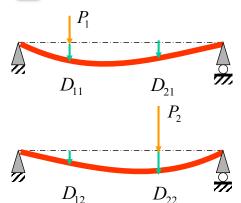
45

3. FLEXIBILITE

3.3.1.2 Théorème de Maxwell-Betti



 P_1 puis P_2



 $\bullet P_1$

Energie stockée: $W_1 = 1/2 \cdot P_1 \cdot D_{11}$

• Puis P_2

Energie stockée : $W_2 = 1/2 \cdot P_2 \cdot (D_{22} - D_{21})$

Total:
$$W = 1/2 \cdot P_1 \cdot D_{11} + 1/2 \cdot P_2 \cdot (D_{22} - D_{21})$$

 P_2 puis P_1

• P_2 Energie stockée: $W_1 = 1/2 \cdot P_2 \cdot D_{22}$

• Puis P_1 Energie stockée: $W_2 = 1/2 \cdot P_1 \cdot (D_{11} - D_{12})$

Total:
$$W = 1/2 \cdot P_2 \cdot D_{22} + 1/2 \cdot P_1 \cdot (D_{11} - D_{12})$$

Synthèse

Energie de déformation actuelle indépendante de l'ordre du chargement

$$W = 1/2 \cdot P_1 \cdot D_{11} + 1/2 \cdot P_2 \cdot (D_{22} - D_{21}) = 1/2 \cdot P_2 \cdot D_{22} + 1/2 \cdot P_1 \cdot (D_{11} - D_{12})$$

Soit:
$$1/2 \cdot P_1 \cdot D_{12} = 1/2 \cdot P_2 \cdot D_{21}$$

Pour $P_1 \& P_2$ chargements unitaires : $f_{21} = f_{12}$

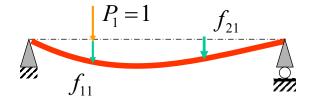
Dimensionnement Des Structures 47

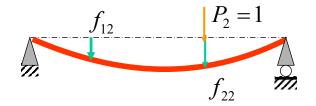
3. FLEXIBILITE

$$f_{21} = f_{12}$$

Déplacement projeté sur P_2 dû à P_1 unitaire

Déplacement projeté sur P_1 dû à P_2 unitaire





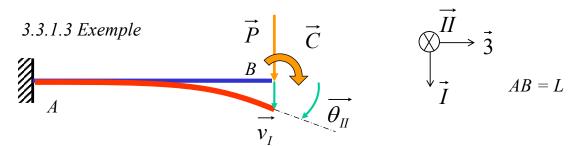
Généralisation

La matrice de flexibilité est symétrique

$$f_{ij} = f_{ji}$$

$$\left[\begin{array}{c}f\end{array}\right]=\left[\begin{array}{c}f\end{array}\right]^{T}$$

Remarque : résultat valable pour toute structure linéaire (pas seulement poutres)



$$Mf_{II} = E \cdot I_{II} \cdot \frac{d^{2}v_{I}(z)}{dz^{2}}$$

$$\theta_{II} = \frac{dv_{I}(z)}{dz}$$

$$v_{I}(L) = P \cdot \frac{L^{3}}{3 \cdot E \cdot I_{II}} + C \cdot \frac{L^{2}}{2 \cdot E \cdot I_{II}}$$

$$\theta_{II}(L) = P \cdot \frac{L^{2}}{2 \cdot E \cdot I_{II}} + C \cdot \frac{L}{E \cdot I_{II}}$$

$$\begin{bmatrix} v_I \\ \theta_{II} \end{bmatrix} = \begin{bmatrix} \frac{L^3}{3 \cdot E \cdot I_{II}} & \frac{L^2}{2 \cdot E \cdot I_{II}} \\ \frac{L^2}{2 \cdot E \cdot I_{II}} & \frac{L}{E \cdot I_{II}} \end{bmatrix} \cdot \begin{bmatrix} P \\ C \end{bmatrix}$$

Dimensionnement Des Structures 49

3. FLEXIBILITE

3.3.2 Travail des actions extérieures en fonction de la matrice de flexibilité

$$W_{ext} = \sum_{i=1}^{nb \ actions} \frac{1}{2} \cdot P_i \cdot D_i$$
 & $D_i = \sum_{j=1}^{nb \ actions} f_{ij} \cdot P_j$

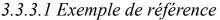
Sous forme matricielle:

$$W_{ext} = \frac{1}{2} \cdot [P]^T \cdot [D] \qquad \& \qquad [D] = [f] \cdot [P]$$

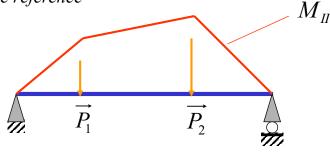
Soit:

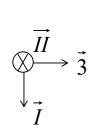
$$W_{ext} = \frac{1}{2} \cdot [P]^T \cdot [f] \cdot [P]$$

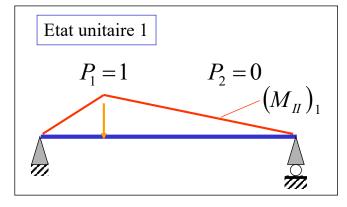
3.3.3 Calcul des termes de la matrice de flexibilité

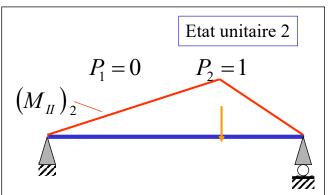


Configuration initiale









Dimensionnement Des Structures 51

3. FLEXIBILITE

Principe de linéarité & de superposition

 $M_{II} = \left(M_{II}\right)_1 \cdot P_1 + \left(M_{II}\right)_2 \cdot P_2$ Moment fléchissant config. initiale État unitaire 1

Energie de déformation

$$\begin{split} W_{def} &= \int_{L} \left(\frac{M_{II}^{2}}{2 E I_{II}} \right) \cdot dz \\ W_{def} &= P_{1}^{2} \cdot \int_{L} \frac{\left(M_{II} \right)_{1}^{2}}{2 E I_{II}} \cdot dz + P_{2}^{2} \cdot \int_{L} \frac{\left(M_{II} \right)_{2}^{2}}{2 E I_{II}} \cdot dz \\ &+ 2.P_{1} \cdot P_{2} \cdot \int_{L} \frac{\left(M_{II} \right)_{1} \cdot \left(M_{II} \right)_{2}}{2 E I_{II}} \cdot dz \end{split}$$

Travail des forces extérieures

$$W_{ext} = \frac{1}{2} \cdot [P]^T \cdot [f] \cdot [P]$$

$$W_{ext} = \frac{1}{2} \cdot \begin{bmatrix} P_1 & P_2 \end{bmatrix} \cdot \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \cdot \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$

avec
$$f_{12} = f_{21}$$

$$W_{ext} = P_1^2 \cdot f_{11} \cdot \frac{1}{2} + P_2^2 \cdot f_{22} \cdot \frac{1}{2} + 2 \cdot P_1 \cdot P_2 \cdot f_{12} \cdot \frac{1}{2}$$

Dimensionnement Des Structures 53

Identification

$$f_{11} = \int_{L}^{\bullet} \frac{\left(M_{II}\right)_{1}^{2}}{E I_{II}} \cdot dz$$

$$f_{22} = \int_{L} \frac{\left(M_{II}\right)_{2}^{2}}{E I_{II}} \cdot dz$$

$$f_{12} = \int_{L} \frac{\left(M_{II}\right)_{1} \cdot \left(M_{II}\right)_{2}}{E I_{II}} \cdot dz$$

3.3.3.2 Généralisation

$$f_{ij} = \int_{L} \left(\frac{\left(T_{I}\right)_{i} \cdot \left(T_{I}\right)_{j}}{G A} + \frac{\left(T_{II}\right)_{i} \cdot \left(T_{II}\right)_{j}}{G A} + \frac{\left(N_{3}\right)_{i} \cdot \left(N_{3}\right)_{j}}{E A} + \frac{\left(M_{I}\right)_{i} \cdot \left(M_{II}\right)_{j}}{E I_{II}} + \frac{\left(M_{II}\right)_{i} \cdot \left(M_{II}\right)_{j}}{E I_{II}} + \frac{\left(M_{3}\right)_{i} \cdot \left(M_{3}\right)_{j}}{G I_{G}} \right) \cdot dz$$

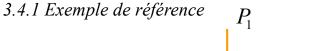
Analogie avec l'énergie stockée dans une poutre, mais ici :

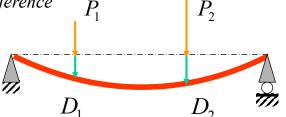
- Pas de facteur $\frac{1}{2}$
- Les efforts internes sont calculés pour une charge unitaire $(X)_i$: effort interne pour état i unitaire

Dimensionnement Des Structures 55

3. FLEXIBILITE

3.4 Méthode de Castigliano





Configuration actuelle

Maxwell – Mohr:

$$\begin{bmatrix} D_{1} \\ D_{2} \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \cdot \begin{bmatrix} P_{1} \\ P_{2} \end{bmatrix} \qquad W_{ext} = \frac{1}{2} \cdot [P_{1} \quad P_{2}] \cdot \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \cdot \begin{bmatrix} P_{1} \\ P_{2} \end{bmatrix}$$

$$W_{ext} = \frac{1}{2} \cdot [P]^{T} \cdot [f] \cdot [P] \qquad W_{ext} = \frac{1}{2} \cdot f_{11} \cdot P_{1}^{2} + f_{12} \cdot P_{1} \cdot P_{2} + \frac{1}{2} \cdot f_{22} \cdot P_{2}^{2}$$

$$W_{ext} = \frac{1}{2} \cdot f_{11} \cdot P_1^2 + f_{12} \cdot P_1 \cdot P_2 + \frac{1}{2} \cdot f_{22} \cdot P_2^2$$

Premier théorème de Castigliano

$$D_1 = f_{11} \cdot P_1 + f_{12} \cdot P_2$$

$$D_1 = \frac{\partial W_{ext}}{\partial P_1}$$

$$D_2 = f_{21} \cdot P_1 + f_{22} \cdot P_2$$

$$D_2 = \frac{\partial W_{ext}}{\partial P_2}$$

Deuxième théorème de Castigliano

$$f_{11} = \frac{\partial^2 W_{ext}}{\partial P_1^2}$$

$$f_{22} = \frac{\partial^2 W_{ext}}{\partial P_2^2}$$

$$f_{11} = \frac{\partial^2 W_{ext}}{\partial P_1^2} \qquad f_{22} = \frac{\partial^2 W_{ext}}{\partial P_2^2} \qquad f_{12} = \frac{\partial^2 W_{ext}}{\partial P_1 \partial P_2}$$

Dimensionnement Des Structures

57

3. FLEXIBILITE

3.4.2 Généralisation

Premier théorème de Castigliano

Détermination des déplacements

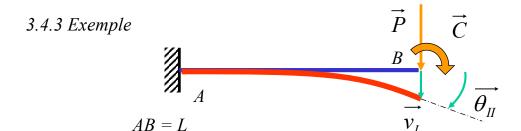
$$D_i = \frac{\partial W_{ext}}{\partial P_i}$$

Deuxième théorème de Castigliano

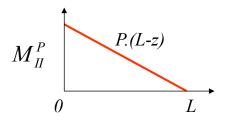
Détermination des termes de flexibilité

$$f_{ij} = \frac{\partial^2 W_{ext}}{\partial P_i \ \partial P_j}$$

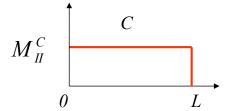
L'énergie de déformation est l'énergie réelle (pas une énergie calculée pour des états unitaires comme avec Maxwell – Mohr)



Détermination des efforts internes



Moment fléchissant dû à P



Moment fléchissant dû à C

Rq: efforts tranchants négligés

Dimensionnement Des Structures 59

3. FLEXIBILITE

Energie de déformation

$$W_{def} = \int_{0}^{L} \left(\frac{\left(M_{II}^{P} + M_{II}^{C} \right)^{2}}{2 E I_{II}} \right) \cdot dz$$

$$W_{def} = \int_{0}^{L} \left(\frac{\left(P(L-z) + C \right)^{2}}{2 E I_{II}} \right) \cdot dz$$

$$W_{def} = \frac{1}{2 E I_{II}} \int_{0}^{L} (P^{2}(L-z)^{2} + C^{2} + 2PC(L-z)) dz$$

$$W_{def} = \frac{1}{2 E I_{II}} \left\{ \left[-\frac{1}{3} P^2 (L - z)^3 \right]_0^L + \left[-PC (L - z)^2 \right]_0^L + \left[C^2 \cdot z \right]_0^L \right\}$$

60

$$W_{def} = \frac{\frac{1}{3}P^{2}L^{3} + PCL^{2} + C^{2} \cdot L}{2EI_{II}}$$

Déplacements

$$v_{I} = \frac{\partial W_{ext}}{\partial P} = \frac{P L^{3}}{3 E I_{II}} + \frac{C L^{2}}{2 E I_{II}} \qquad \theta_{II} = \frac{\partial W_{ext}}{\partial C} = \frac{P L^{2}}{2 E I_{II}} + \frac{C L}{E I_{II}}$$

$$\theta_{II} = \frac{\partial W_{ext}}{\partial C} = \frac{P L^2}{2 E I_{II}} + \frac{C L}{E I_{II}}$$

Matrice de flexibilité

$$f_{11} = \frac{\partial^{2} W_{ext}}{\partial P^{2}}$$

$$f_{12} = \frac{\partial^{2} W_{ext}}{\partial P \partial C}$$

$$f_{12} = \frac{\partial^{2} W_{ext}}{\partial P \partial C}$$

$$\begin{bmatrix} v_{I} \\ \theta_{II} \end{bmatrix} = \begin{bmatrix} \frac{L^{3}}{3 \cdot E \cdot I_{II}} & \frac{L^{2}}{2 \cdot E \cdot I_{II}} \\ \frac{L^{2}}{2 \cdot E \cdot I_{II}} & \frac{L}{E \cdot I_{II}} \end{bmatrix} \cdot \begin{bmatrix} P \\ C \end{bmatrix}$$

61 **Dimensionnement Des Structures**

3. FLEXIBILITE

3.5 Systèmes hyperstatiques

3.5.1 Système hyperstatique externe

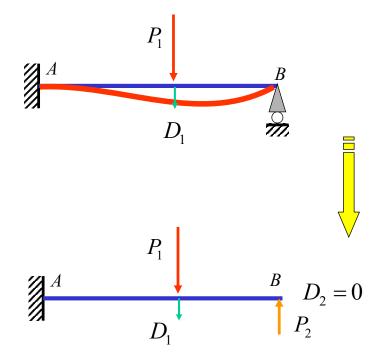
Système hyperstatique externe

Nombre d'inconnues de liaison supérieur au nombre d'équations de la statique

Principe de résolution

- On « casse » des liaisons afin de se ramener à un système isostatique
- Pour chaque degré de liberté introduit (ou degré de liaison « cassé »), on introduit une charge généralisée si ddl translation -> force *si ddl rotation -> couple*
- On écrit que les déplacements des degrés de liberté introduits sont nuls

Exemple



- On « casse » l' appui en B (par exemple)
- On introduit une force P
- On écrit que le déplacement en B est nul

Dimensionnement Des Structures

3. FLEXIBILITE

63

3.5.2 Système hyperstatique interne

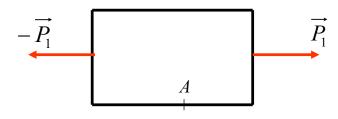
Système hyperstatique interne

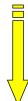
On ne peut pas calculer les composantes du torseur de section

Principe de résolution

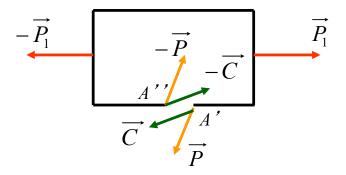
- On « coupe » des poutres
- Pour chaque coupure, on introduit un torseur (une force et un couple) à chacune des extrémités coupées & On écrit que les torseurs introduits sont opposés
- On raccorde les extrémités coupées en écrivant que les déplacements y sont égaux

Exemple





- On « coupe » en A
- On introduit un torseur en A' & A'
- On écrit que les déplacements en A' et A' sont égaux



Dimensionnement Des Structures 65

4. RIGIDITE

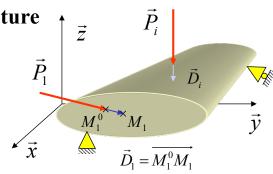
4. RIGIDITE

4.1 Flexibilité et rigidité d'une structure

Matrice de flexibilité de la structure

$$[D] = [f] \cdot [P]$$

$$egin{bmatrix} D_1 \ D_2 \ dots \ D_n \end{bmatrix}$$



$$[f] = \begin{bmatrix} f_{11} & \cdots & f_{1n} \\ \vdots & f_{ij} & \vdots \\ f_{n1} & \cdots & f_{nn} \end{bmatrix}$$
 Maxwell-Mohr ou Castigliano

 f_{ii} : déplacement généralisé D_i provoqué par une charge P_i unitaire seule

Énergie de déformation

$$W_{ext} = \frac{1}{2} \cdot [P]^T \cdot [f] \cdot [P]$$
 Expression en fonction de la matrice de flexibilité & des charges extérieures

67 **Dimensionnement Des Structures**

IUT Lyon 1

4. RIGIDITE

Matrice de rigidité de la structure

On inverse la matrice de flexibilité:

$$[P] = [f]^{-1} \cdot [D]$$

$$[K] = [f]^{-1}$$

$$[P] = [K] \cdot [D]$$

$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} k_{11} & \cdots & k_{1n} \\ \vdots & k_{ij} & \vdots \\ k_{n1} & \cdots & k_{nn} \end{bmatrix} \qquad \mathbf{k_{ij}} : \text{Charge généralisée } P_i \text{ provoquée } \\ \text{par un déplacement } D_j \text{ unitaire seul}$$

Matrice de rigidité Carrée (n x n) symétrique

68

Énergie de déformation

$$W_{ext} = \frac{1}{2} \cdot [P]^T \cdot [f] \cdot [P] \qquad \text{avec} \quad [P] = [K] \cdot [D]$$

$$W_{ext} = \frac{1}{2} \cdot ([K] \cdot [D])^T \cdot [f] \cdot ([K] \cdot [D])$$

$$W_{ext} = \frac{1}{2} \cdot [D]^T \cdot [K]^T \cdot [f] \cdot [K] \cdot [D] \qquad \text{Avec} \qquad [K] = [K]^T$$

$$\text{et} \qquad [K] \cdot [f] = [I]$$

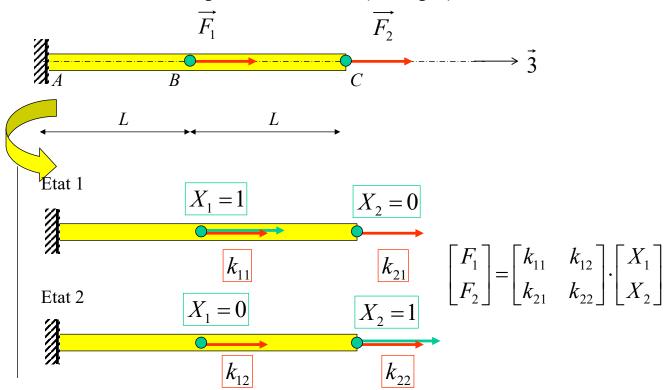
$$W_{ext} = \frac{1}{2} \cdot [D]^T \cdot [K] \cdot [D]$$

Expression en fonction de la matrice de raideur & des déplacements

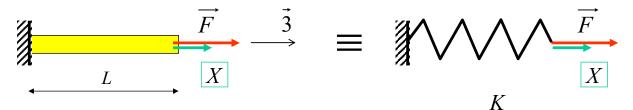
Dimensionnement Des Structures 69

4. RIGIDITE

4.2 Méthode du déplacement unité (exemple)



Rigidité en traction / compression



$$W_{def} = \frac{F^2 \cdot L}{2 E A}$$

$$W_{ext} = \frac{1}{2} \cdot F \cdot X$$

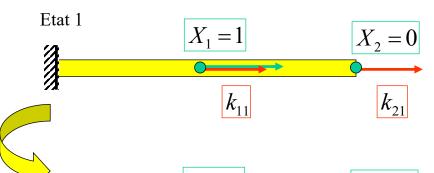
$$F = \frac{E A}{L} \cdot X$$

$$F = K \cdot X$$

$$K = \frac{E A}{L}$$

Dimensionnement Des Structures 71

4. RIGIDITE

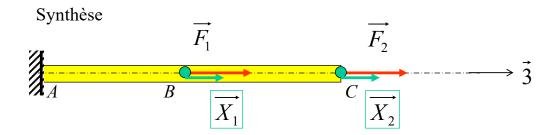




Soit:
$$k_{11} = \frac{E A}{L}$$
$$k_{21} = -\frac{E A}{L}$$

De même, état 2 :

$$k_{22} = \frac{E A}{L}$$
$$k_{12} = -\frac{E A}{L}$$



$$\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \frac{E A}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Dimensionnement Des Structures 73

Département Génie Mécanique et Productique

Dimensionnement Des Structures

R5 MMP 02

Michel MASSENZIO

Méthode des éléments finis

1. Introduction

- Notion de maillage, d'éléments finis et de nœuds
- Degrés de libertés
- Interpolation

2. Matrice de rigidité d'un élément libre

- Matrice d'interpolation des déplacements
- Matrice d'interpolation des déformations
- Matrice des contraintes
- Matrice de rigidité

3. MEF appliquée aux poutres

- Sollicitations simples
- Matrice de rigidité d'un élément libre
- Transformation des coordonnées par rotation du repère
- Assemblage

4. Exemple

Dimensionnement Des Structures 75

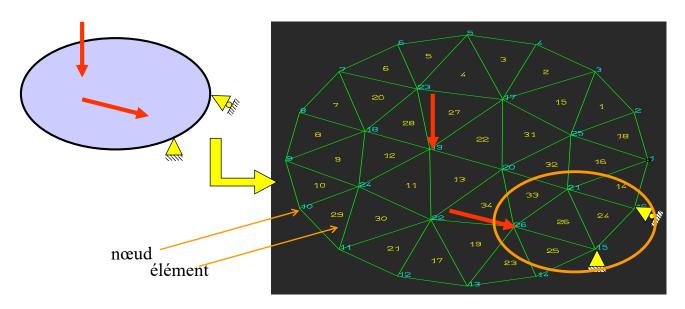
1. INTRODUCTION

1.1 Notion de maillage, d'éléments finis et de nœuds

<u>Maillage de la structure</u> : discrétisation de la structure réelle en éléments de forme géométrique simple

Structure réelle continue

Structure maillée

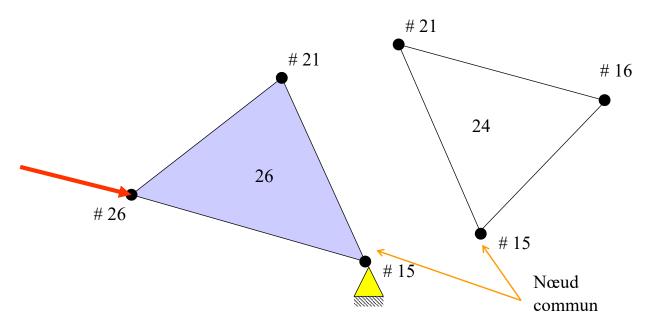


Dimensionnement Des Structures 77

1. INTRODUCTION

Elément n° 26 (triangle à 3 nœuds) Constitué des nœuds # 15, # 21 et # 26

Charges extérieures et liaisons appliquées sur les nœuds du maillage



Forme de l'élément : fonction du milieu à mailler (dimension 1D 2D 3D)

1D: poutres

La ligne moyenne caractérise la géométrie de la poutre, la section droite devient un paramètre de l'élément Théorie des poutres

+

ligne moyenne Section droite

Discrétisation

Elément:
Segment droit

« Chaîne constituée de mailles (les éléments) »

Dimensionnement Des Structures

79

IUT Lyon 1

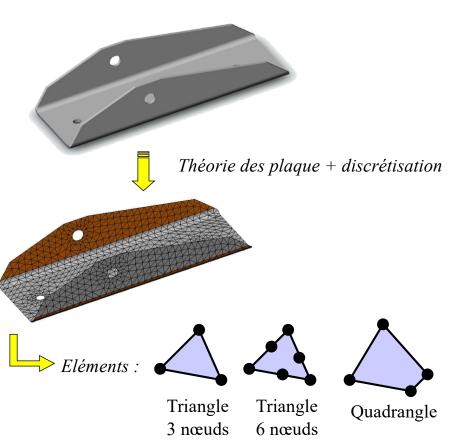
2D: plaques

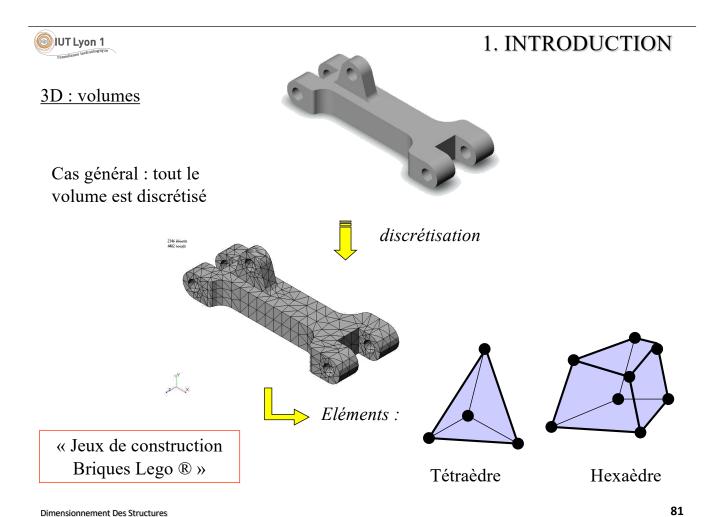
(idem : membranes, coques, contraintes planes, déformations planes, problèmes axisymétriques)

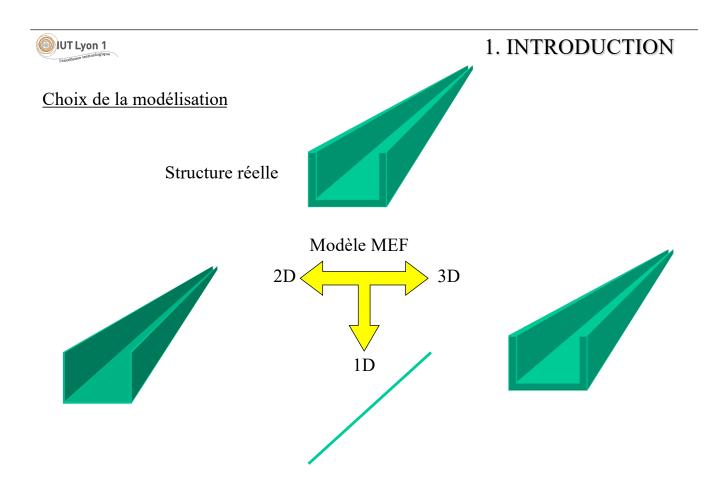
La surface moyenne caractérise la géométrie de la plaque, l'épaisseur devient un paramètre de l'élément

« Puzzle constitué de pièces (les éléments) »

1. INTRODUCTION

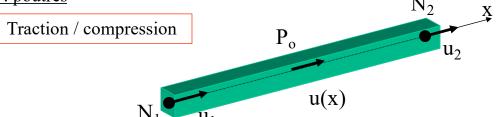




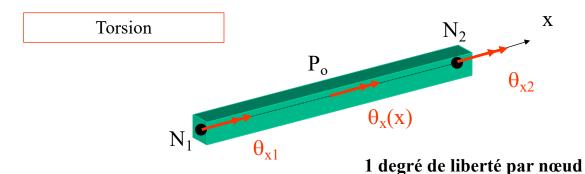


1.2 Degrés de liberté

Choix des déplacements



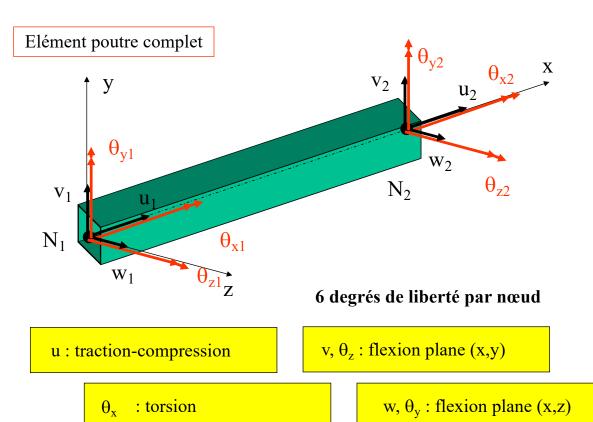
1 degré de liberté par nœud



Dimensionnement Des Structures

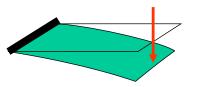
1. INTRODUCTION

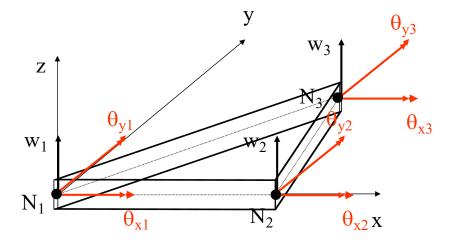
83



2D: plaques en flexion

3 degrés de liberté par nœud



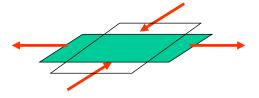


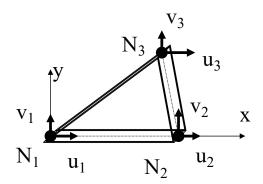
Dimensionnement Des Structures 85

1. INTRODUCTION

2D : plaques en membrane

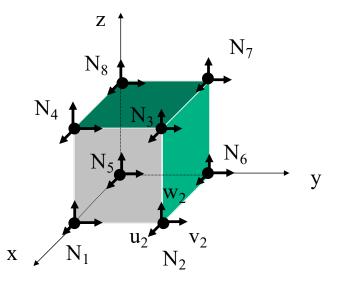
2 degrés de liberté par nœud





3D: volumes

3 degrés de liberté par nœud Seules les translation sont modélisées



Dimensionnement Des Structures 87

1. INTRODUCTION

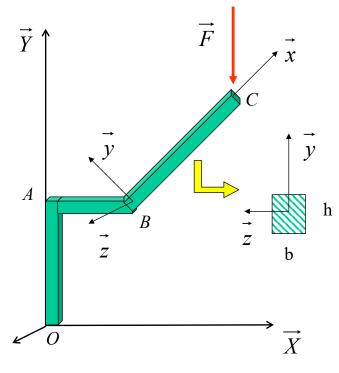
Repères locaux et globaux

$$(\vec{X}, \vec{Y}, \vec{Z})$$

Repère global de la structure

$$\left(\stackrel{\rightarrow}{x}, \stackrel{\rightarrow}{y}, \stackrel{\rightarrow}{z} \right)$$

Repère local de l'élément



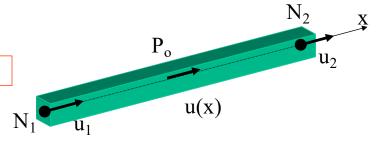
 \vec{Z}

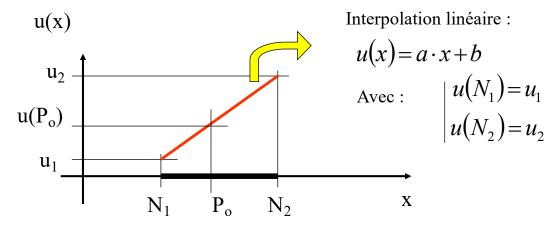
1.3 Interpolation

Problématique

1D : poutres

Traction / compression





Dimensionnement Des Structures

1. INTRODUCTION

Interpolation polynomiale

Expression du déplacement dans l'élément fini en fonction des déplacements aux nœuds. La fonction classiquement polynomiale est conditionnée par :

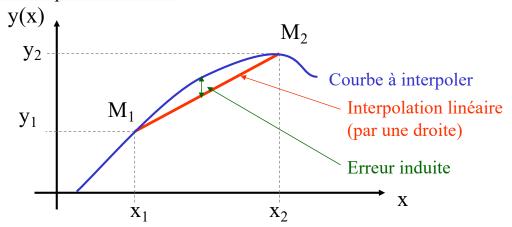
- La dimension de l'élément (1D, 2D, 3D)
- Le nombre de nœud de l'élément
- Le nombre de degrés de libertés par nœud.

1D: poutres (milieu de dimension 1)

Polynôme fonction d'une seule variable d'espace : x (position sur la ligne moyenne)

	Nb	Degré	Interpolation	Fonction
	de terme	Polynôme		
1	1	0		$lpha_{_1}$
\boldsymbol{x}	2	1	Linéaire	$\alpha_1 + \alpha_2 \cdot x$
x^2	3	2	Quadratique	$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot x^2$
x^3	4	3	Cubique	$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot x^2 + \alpha_4 \cdot x^3$
x^4	5	4	4 ^{ième} degré	$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot x^2 + \alpha_4 \cdot x^3 + \alpha_5 \cdot x^4$

Retour sur l'interpolation linéaire



Equation de la fonction d'interpolation : $y(x) = a \cdot x + b$

$$y(x_1) = y_1$$

$$y_1 = a \cdot x_1 + b$$

Soit:
$$a = \frac{y_1 - y_2}{x_1 - x_2}$$

$$y(x_2) = y_2$$

$$\begin{vmatrix} y(x_1) = y_1 & y_1 = a \cdot x_1 + b \\ y(x_2) = y_2 & y_2 = a \cdot x_2 + b \end{vmatrix}$$

$$b = \frac{y_2 \cdot x_1 - x_2 \cdot y_1}{x_1 - x_2}$$

91 **Dimensionnement Des Structures**

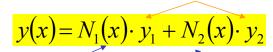
1. INTRODUCTION

Fonction d'interpolation en fonction des déplacements aux nœuds :

$$y(x) = \frac{y_1 - y_2}{x_1 - x_2} \cdot x + \frac{y_2 \cdot x_1 - x_2 \cdot y_1}{x_1 - x_2}$$

Ecriture « élément finis » de la fonction d' interpolation :

en fonction des déplacements aux nœuds



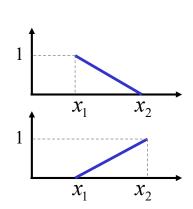
Avec:

Fonctions d'interpolation Ou Fonctions de forme

$$N_{1}(x) = \frac{x - x_{2}}{x_{1} - x_{2}}$$

$$N_{2}(x) = \frac{x_{1} - x_{2}}{x_{1} - x_{2}}$$

$$N_2(x) = \frac{x_1 - x}{x_1 - x_2}$$



2D: plaques, membranes... (milieu de dimension 2)

Polynôme fonction de deux variables d'espace : x et y (position dans un plan)

Polynôme complet

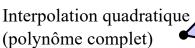
Triangle	Nb	Degré	Interpolation
de Pascal	de terme	Polynôme	
1	1	0	
x y	3	1	Linéaire
x^2 xy y^2	6	2	Quadratique
x^3 x^2y xy^2 y^3	10	3	Cubique
x^4 x^3y x^2y^2 xy^3 y^4	15	4	4 ^{ième} degré

$$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot y$$

$$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot y + \alpha_4 \cdot x \ y + \alpha_5 \cdot x^2 + \alpha_6 \cdot y^2$$

$$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot y + \alpha_4 \cdot x y$$

Interpolation linéaire (polynôme complet)



Interpolation bilinéaire (polynôme incomplet)

Dimensionnement Des Structures

93

IUT Lyon 1

1. INTRODUCTION

3D: volumes (milieu de dimension 3)

Polynôme fonction de trois variables d'espace : x, y et z (position dans l'espace)

Polynôme complet

Triangle	Nb	Degré	Interpolation
de Pascal	de terme	Polynôme	
1	1	0	
x y z	4	1	Linéaire
x^2 y^2 z^2 xy yz zx	10	2	Quadratique
x^{3} y^{3} z^{3} xy^{2} yz^{2} zx^{2} $x^{2}y$ $y^{2}z$ $z^{2}x$ xy	z = 20	3	Cubique

$$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot y + \alpha_4 \cdot z$$
 Interpolation linéaire (polynôme complet)

$$\alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot y + \alpha_4 \cdot z + \cdots$$
 Interpolation quadratique (polynôme complet)

$$\cdots \alpha_5 \cdot x^2 + \alpha_6 \cdot y^2 + \alpha_7 \cdot z^2 + \alpha_8 \cdot x \ y + \alpha_9 \cdot y \ z + \alpha_{10} \cdot z \ x$$

2. MATRICE DE RIGIDITE D'UN ELEMENT LIBRE

Dimensionnement Des Structures 95

2. MATRICE DE RIGIDITE ELEMENTAIRE

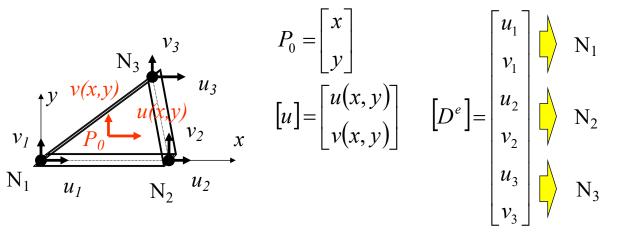
2.1 Matrice d'interpolation des déplacements

Objectif: interpolation du déplacement [u] d'un point P_0 quelconque

dans l'élément en fonction des déplacements nodaux $\left[D^e
ight]$

$$[u] = [A] \cdot [D^e]$$

Exemple: plaques en membrane (2D)



$$[D^e] = \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix}$$
 3 valeurs connues par DDL

Interpolation linéaire :

$$u(x,y) = \alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot y$$
$$v(x,y) = \alpha_4 + \alpha_5 \cdot x + \alpha_6 \cdot y$$

Sous forme matricielle:

$$\begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} = \begin{bmatrix} 1 & x & y & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x & y \end{bmatrix} \cdot \begin{bmatrix} \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix}$$

Dimensionnement Des Structures

97

2. MATRICE DE RIGIDITE ELEMENTAIRE

Par ailleurs:

$$u_1 = \alpha_1 + \alpha_2 \cdot x_1 + \alpha_3 \cdot y_1$$

$$v_1 = \alpha_4 + \alpha_5 \cdot x_1 + \alpha_6 \cdot y_1 \quad \cdots$$

Soit:

$$\begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & y_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_1 & y_1 \\ 1 & x_2 & y_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_2 & y_2 \\ 1 & x_3 & y_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_3 & y_3 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix}$$

Inversion de la matrice

On obtient:

$$[u] = [A] \cdot [D^e]$$

[A]

Matrice d'interpolation des déplacements

$$\begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix}$$

Avec les polynômes d'interpolation :

$$N_{1} = \frac{(x_{2} \cdot y_{3} - x_{3} \cdot y_{2}) + (y_{2} - y_{3}) \cdot x + (x_{3} - x_{2}) \cdot y}{(x_{2} \cdot y_{3} - y_{1} \cdot x_{2} - x_{1} \cdot y_{3} - x_{3} \cdot y_{2} + x_{3} \cdot y_{1} + x_{1} \cdot y_{2})}$$

 $N_2 \& N_3$ par permutation circulaire

99 **Dimensionnement Des Structures**

2. MATRICE DE RIGIDITE ELEMENTAIRE

2.2 Matrice d'interpolation des déformations

Par dérivation de la matrice des déplacements [u] on obtient la matrice des déformations $|\mathcal{E}|$

$$[\varepsilon] = [\partial] \cdot [u]$$

 $[\varepsilon] = [\partial] \cdot [u]$ [\delta] Matrice des opérateurs différentiels

Soit, avec
$$[u] = [A] \cdot [D^e]$$

$$[\varepsilon] = [\partial] \cdot [A] \cdot [D^e]$$

$$[\varepsilon] = [B] \cdot [D^e]$$

$$[B] = [\partial] \cdot [A]$$

Matrice d'interpolation des déformations dans l'élément

100

2.3 Matrice des contraintes

La loi de comportement permet décrire la matrice des contraintes $|\sigma|$ en fonction de la matrice des déformations \mathcal{E}

Matériau linéaire élastique isotrope : loi de Lamé

$$[\sigma] = [C] \cdot [\varepsilon]$$

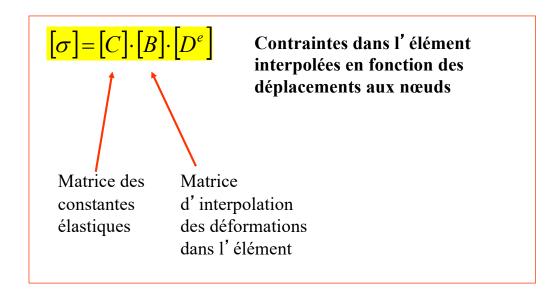
loi de Lamé Cas général

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}$$

101 **Dimensionnement Des Structures**

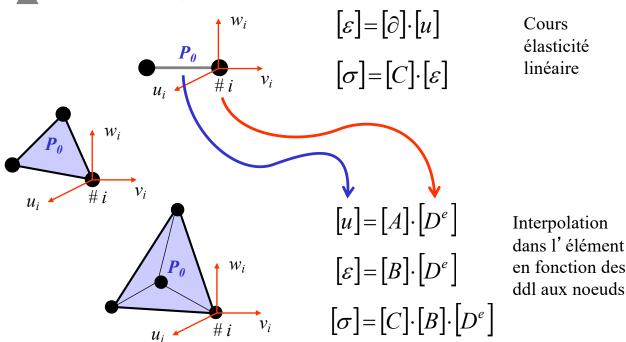
2. MATRICE DE RIGIDITE ELEMENTAIRE

$$[\varepsilon] = [B] \cdot [D^{e}]$$
$$[\sigma] = [C] \cdot [\varepsilon]$$



2.4 Matrice de rigidité élémentaire

Synthèse des interpolations



Dimensionnement Des Structures 103

2. MATRICE DE RIGIDITE ELEMENTAIRE

Énergie de déformation dans l'élément en fonction des déplacement aux nœuds

Cours méthodes énergétiques
$$W_{def} = \frac{1}{2} \int_{V_0} [\sigma]^T \cdot [\varepsilon] \cdot dV$$

$$Avec \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix} \qquad [\varepsilon] = \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{31} \end{bmatrix}$$

$$+$$
 Interpolation dans l'élément $[\varepsilon] = [B] \cdot [D^e]$ $[\sigma] = [C] \cdot [B] \cdot [D^e]$

Déplacements nodaux constants pour un élément,

$$W_{def} = \frac{1}{2} \begin{bmatrix} D^e \end{bmatrix}^T \cdot \int_{V_e} [B]^T \cdot [C] \cdot [B] \cdot dV_e \cdot [D^e]$$

$$\text{Par ailleurs}: \quad W_{def} = \frac{1}{2} \begin{bmatrix} D^e \end{bmatrix}^T \cdot \begin{bmatrix} K^e \end{bmatrix} \cdot \begin{bmatrix} D^e \end{bmatrix}$$

Par ailleurs:
$$W_{def} = \frac{1}{2} [D^e]^T \cdot [K^e] \cdot [D^e]$$

Matrice de rigidité élémentaire :

$$\left[K^{e}\right] = \int_{V_{e}} \left[B\right]^{T} \cdot \left[C\right] \cdot \left[B\right] \cdot dV_{e}$$

Propriétés: - Symétrique

> - Singulière (déterminant nul, inversion impossible) Explication physique : l'élément libre possède des mouvements de corps rigides, c à d il peut se déplacer sans se déformer (rigidité nulle donc flexibilité infinie).

105 **Dimensionnement Des Structures**

3. MEF APPLIQUEE **AUX POUTRES**

3.1 Poutre droite à 2 nœuds - Sollicitations simples

Traction - Compression

Théorie des poutres

$$\begin{bmatrix} \varepsilon_{xx} = \frac{du}{dx} \\ \sigma_{xx} = E \cdot \varepsilon_{xx} \end{bmatrix}$$

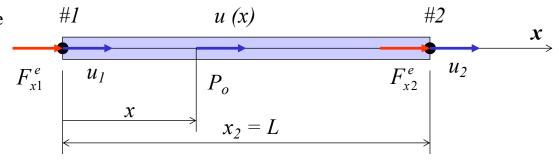
$$\begin{bmatrix} \varepsilon \end{bmatrix} = [\partial] \cdot [u]$$

$$[\partial] = \left[\frac{d}{dx} \right]$$

$$[\sigma] = [C] \cdot [\varepsilon]$$

$$[C] = [E]$$

Elément e



107 **Dimensionnement Des Structures**

3. MEF APPLIQUEE AUX POUTRES

Matrice d' interpolation des déplacements |A|

2 nœuds, 2 ddl: interpolation linéaire

$$u(x) = \alpha_1 + \alpha_2 \cdot x \qquad \qquad u(x) = \begin{bmatrix} 1 & x \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$

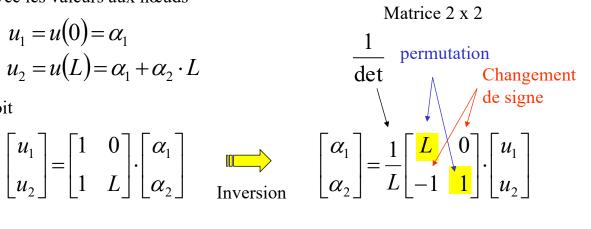
Avec les valeurs aux nœuds

$$u_1 = u(0) = \alpha_1$$

$$u_2 = u(L) = \alpha_1 + \alpha_2 \cdot L$$

Soit

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & L \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$



Soit

$$u(x) = \begin{bmatrix} 1 & x \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1/L & 1/L \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$u(x) = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$[A] \qquad [D^e]$$

$$[A] = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$

Matrice d'interpolation des déplacements

Dimensionnement Des Structures

3. MEF APPLIQUEE AUX POUTRES

Matrice d'interpolation des déformations |B|

$$\left[\partial\right] = \left[\frac{d}{dx}\right]$$
 Matrice des opérateurs différentiels

$$[B] = [\partial] \cdot [A]$$

$$[B] = \begin{bmatrix} \frac{d}{dx} \end{bmatrix} \cdot \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$

$$[B] = \frac{d}{dx} \cdot \left[1 - \frac{x}{L} \quad \frac{x}{L} \right]$$

$$[B] = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$

Matrice d'interpolation des déformations

109

Matrice de comportement du matériau C

$$[C]=[E]$$

Module d' Young

$$[C]=E$$

Dimensionnement Des Structures 111

3. MEF APPLIQUEE AUX POUTRES

Matrice de rigidité élémentaire $\left[K^e\right]$

$$\begin{bmatrix} K^e \end{bmatrix} = \int_{V_e} [B]^T \cdot [C] \cdot [B] \cdot dV_e$$
$$\begin{bmatrix} K^e \end{bmatrix} = \int_{V_e} \begin{bmatrix} -1/L \\ 1/L \end{bmatrix} \cdot [E] \cdot [-1/L \quad 1/L] \cdot dV_e$$

$$[K^e] = \int_{V_e} E \cdot \begin{bmatrix} -1/L \\ 1/L \end{bmatrix} \cdot [-1/L \quad 1/L] \cdot dV_e$$

$$\begin{bmatrix} K^e \end{bmatrix} = E \cdot \begin{bmatrix} 1/L^2 & -1/L^2 \\ -1/L^2 & 1/L^2 \end{bmatrix} \cdot \int_{V_e} dV_e$$

112

$$\begin{bmatrix} K^e \end{bmatrix} = E \cdot \begin{bmatrix} 1/L^2 & -1/L^2 \\ -1/L^2 & 1/L^2 \end{bmatrix} \cdot A \cdot L$$

$$\left[K^{e}\right] = \frac{E \cdot A}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Matrice de rigidité élémentaire d'une poutre droite en traction compression

Relation efforts - déplacements

$$\begin{bmatrix} F_{x1}^e \\ F_{x2}^e \end{bmatrix} = \frac{E \cdot A}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad [P^e] = [K^e] \cdot [D^e]$$

$$[P^e] = [K^e] \cdot [D^e]$$

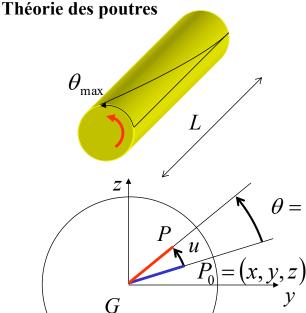
Matériau, longueur de l'élément, section droite de l'élément

Dimensionnement Des Structures

113

3. MEF APPLIQUEE AUX POUTRES

Torsion



$$\theta = \theta' \cdot x$$
 avec $\theta' = \theta_{\text{max}} / L$

$$\vec{u} = \vec{\theta} \wedge \vec{GP_0}$$

$$[u] = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$[u] = \begin{bmatrix} 0 \\ -x.z.\theta' \\ x.y.\theta' \end{bmatrix}$$

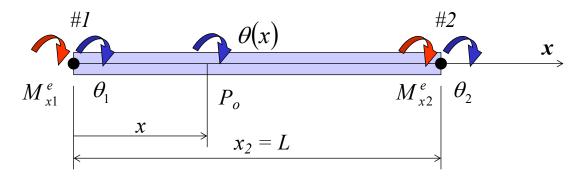
114 **Dimensionnement Des Structures**

 $GP_0 = \rho$

Distorsion
$$\gamma = \rho \cdot \theta'$$

Loi de comportement (Lamé) $\tau = G \cdot \gamma$

Elément e



Dimensionnement Des Structures 115

3. MEF APPLIQUEE AUX POUTRES

Matrice d'interpolation des déplacements $\begin{bmatrix} A \end{bmatrix}$

Idem traction-compression

2 nœuds, 2 ddl: interpolation linéaire

$$\theta(x) = \alpha_2 \cdot x + \alpha_1 \qquad \qquad \theta(x) = \begin{bmatrix} 1 & x \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$$

Avec les valeurs aux nœuds

$$\theta_1 = \theta(0) = \alpha_1$$

$$\theta_2 = \theta(L) = \alpha_1 + \alpha_2 \cdot L$$

Soit

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & L \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \qquad \qquad \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \frac{1}{L} \begin{bmatrix} L & 0 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$
Inversion

116

Soit

$$\theta(x) = \begin{bmatrix} 1 & x \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1/L & 1/L \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$\theta(x) = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} \qquad \begin{bmatrix} D^e \end{bmatrix}$$

$$[A] = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$

Matrice d'interpolation des déplacements

117 **Dimensionnement Des Structures**

3. MEF APPLIQUEE AUX POUTRES

Matrice d'interpolation des déformations |B|

$$\gamma = \rho \cdot \theta'$$
 $\gamma = \rho \cdot \frac{d}{dx}\theta$

$$[\partial] = \left[\rho \cdot \frac{d}{dx} \right]$$
 Matrice des opérateurs différentiels

$$[B] = [\partial] \cdot [A]$$

$$[B] = \rho \cdot \frac{d}{dx} \cdot \left[1 - \frac{x}{L} \quad \frac{x}{L} \right]$$

$$[B] = \rho \cdot \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$$
 Matrice d'interpolation des déformations

$$[C] = [G]$$

Module de Coulomb

$$[C]=G$$

Dimensionnement Des Structures 119

3. MEF APPLIQUEE AUX POUTRES

Matrice de rigidité élémentaire $\left[K^e\right]$

$$\left[K^{e}\right] = \int_{V_{a}} \left[B\right]^{T} \cdot \left[C\right] \cdot \left[B\right] \cdot dV_{e}$$

$$[K^e] = \int_{V_e} \rho \cdot \begin{bmatrix} -1/L \\ 1/L \end{bmatrix} \cdot [G] \cdot \rho \cdot [-1/L \quad 1/L] \cdot dV_e$$

$$\left[K^{e}\right] = \int_{V_{e}} \rho^{2} \cdot G \cdot \begin{bmatrix} -1/L \\ 1/L \end{bmatrix} \cdot \begin{bmatrix} -1/L & 1/L \end{bmatrix} \cdot dV_{e}$$

$$\begin{bmatrix} K^e \end{bmatrix} = G \cdot \begin{bmatrix} 1/L^2 & -1/L^2 \\ -1/L^2 & 1/L^2 \end{bmatrix} \cdot \int_{V_e} \rho^2 dV_e$$

$$\begin{bmatrix} I & I_0 \text{ ou } I_G \\ I & I_0 \text{ ou } I_G \\ I & I_0 \text{ ou } I_G \end{bmatrix}$$
Inertie de torsion

$$\begin{bmatrix} K^e \end{bmatrix} = G \cdot \begin{bmatrix} 1/L^2 & -1/L^2 \\ -1/L^2 & 1/L^2 \end{bmatrix} \cdot I_G \cdot L$$

$$\left[K^{e}\right] = \frac{G \cdot I_{G}}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Matrice de rigidité élémentaire d'une poutre droite de section circulaire en torsion

Relation efforts - déplacements

$$\begin{bmatrix} M_{x1}^e \\ M_{x2}^e \end{bmatrix} = \frac{G \cdot I_G}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \qquad [P^e] = [K^e] \cdot [D^e]$$
Matériau, longueur de l'élément, section droite de l'élément

iviateriaa, iongaear de r'element, section droite de r'element

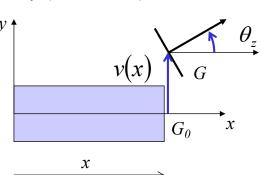
Dimensionnement Des Structures

3. MEF APPLIQUEE AUX POUTRES

Flexion dans le plan xy (autour de z)

Théorie des poutres $\varepsilon_{xx} = \frac{du}{dx}$

$$\sigma_{xx} = E \cdot \varepsilon_{xx}$$



$$\overrightarrow{P_0P} = (u,v)$$

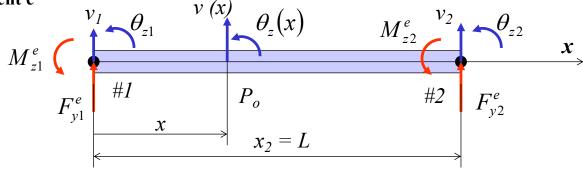
$$u = -y \cdot \theta_z$$

$$\theta_z = \frac{dv}{dx}$$

$$u = -y \cdot \frac{dv}{dx}$$

121

Elément e



Matrice d'interpolation des déplacements ig[Aig]

2 nœuds, 4 ddl & $\theta_z(x) = \frac{dv(x)}{dx}$ interpolation degré 3 cubique

$$v(x) = \alpha_1 + \alpha_2 \cdot x + \alpha_3 \cdot x^2 + \alpha_4 \cdot x^3$$

$$v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix}$$

Avec les valeurs aux nœuds $v_1 = v(0) = \alpha_1$ $v_2 = v(L) = \alpha_1 + \alpha_2 \cdot L + \alpha_3 \cdot L^2 + \alpha_4 \cdot L^3$ $\theta_{z1} = \frac{dv}{dx}(0) = \alpha_2$ $\theta_{z2} = \frac{dv}{dx}(L) = \alpha_2 + 2 \cdot \alpha_3 \cdot L + 3 \cdot \alpha_4 L^2$

Dimensionnement Des Structures 123

3. MEF APPLIQUEE AUX POUTRES

soit
$$\begin{bmatrix} v_1 \\ \theta_{z1} \\ v_2 \\ \theta_{z2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L & L^2 & L^3 \\ 0 & 1 & 2L & 3L^2 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix}$$

Inversion
$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3/L^2 & -2/L & 3/L^2 & -1/L \\ 2/L^3 & 1/L^2 & -2/L^3 & 1/L^2 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \theta_{z1} \\ v_2 \\ \theta_{z2} \end{bmatrix}$$

D'où
$$v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3/L^2 & -2/L & 3/L^2 & -1/L \\ 2/L^3 & 1/L^2 & -2/L^3 & 1/L^2 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \theta_{z1} \\ v_2 \\ \theta_{z2} \end{bmatrix}$$

$$v(x) = \left[\left(1 - \frac{3x^{2}}{L^{2}} + \frac{2x^{3}}{L^{3}} \right) \quad \left(x - \frac{2x^{2}}{L} + \frac{x^{3}}{L^{2}} \right) \quad \left(\frac{3x^{2}}{L^{2}} - \frac{2x^{3}}{L^{3}} \right) \quad \left(-\frac{x^{2}}{L} + \frac{x^{3}}{L^{2}} \right) \right] \cdot \begin{bmatrix} v_{1} \\ \theta_{z1} \\ v_{2} \\ \theta_{z2} \end{bmatrix}$$

$$\begin{bmatrix} D^{e} \end{bmatrix}$$

Matrice d'interpolation des déplacements

$$[A] = \left[\left(1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} \right) \left(x - \frac{2x^2}{L} + \frac{x^3}{L^2} \right) \left(\frac{3x^2}{L^2} - \frac{2x^3}{L^3} \right) \left(-\frac{x^2}{L} + \frac{x^3}{L^2} \right) \right]$$

Dimensionnement Des Structures 125

3. MEF APPLIQUEE AUX POUTRES

Matrice d'interpolation des déformations $\lceil B \rceil$

$$\varepsilon_{xx} = \frac{du}{dx}$$
 & $u = -y \cdot \frac{dv}{dx}$ soit $\varepsilon_{xx} = -y \cdot \frac{d^2v}{dx^2}$

$$[\partial] = \left[-y \cdot \frac{d^2}{dx^2} \right]$$
 Matrice des opérateurs différentiels

$$[B] = [\partial] \cdot [A]$$

$$[A] = \left[\left(1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} \right) \left(x - \frac{2x^2}{L} + \frac{x^3}{L^2} \right) \left(\frac{3x^2}{L^2} - \frac{2x^3}{L^3} \right) \left(-\frac{x^2}{L} + \frac{x^3}{L^2} \right) \right]$$

$$[B] = -y \cdot \left[\left(-\frac{6}{L^2} + \frac{12x}{L^3} \right) \left(-\frac{4}{L} + \frac{6x}{L^2} \right) \left(\frac{6}{L^2} - \frac{12x}{L^3} \right) \left(-\frac{2}{L} + \frac{6x}{L^2} \right) \right]$$

Matrice d'interpolation des déformations

Matrice de comportement du matériau C

$$[C]=[E]$$

Module d' Young

$$[C]=E$$

127 **Dimensionnement Des Structures**

3. MEF APPLIQUEE AUX POUTRES

Matrice de rigidité élémentaire $|K^e|$

Matrice de rigidité élémentaire
$$[K^e]$$

$$[K^e] = \int_{V_e} [B]^T \cdot [C] \cdot [B] \cdot dV_e$$

$$[K^e] = \int_{V_e} E \cdot y^2 \cdot \begin{bmatrix} -\frac{6}{L^2} + \frac{12x}{L^3} \\ -\frac{4}{L} + \frac{6x}{L^2} \\ \frac{6}{L^2} - \frac{12x}{L^3} \\ -\frac{2}{L} + \frac{6x}{L^2} \end{bmatrix} \cdot \begin{bmatrix} -\frac{6}{L^2} + \frac{12x}{L^3} & -\frac{4}{L} + \frac{6x}{L^2} & \frac{6}{L^2} - \frac{12x}{L^3} & -\frac{2}{L} + \frac{6x}{L^2} \end{bmatrix} \cdot dV_e$$
Matrice 4 x 4
$$\begin{bmatrix} k_{11}^e & k_{12}^e & k_{13}^e & k_{14}^e \\ k_{22}^e & k_{23}^e & k_{24}^e \\ k_{33}^e & k_{34}^e \\ k_{44}^e \end{bmatrix}$$

IUT Lyon 1

3. MEF APPLIQUEE AUX POUTRES

Exemple : calcul de k_{11}^e

$$k_{11}^{e} = E \cdot \int_{V_{e}} y^{2} \cdot \left(\frac{-6}{L^{2}} + \frac{12x}{L^{3}}\right)^{2} \cdot dV_{e}$$

$$k_{11}^{e} = E \cdot \int_{A} y^{2} \cdot dA \cdot \int_{L} \left(\frac{-6}{L^{2}} + \frac{12x}{L^{3}}\right)^{2} \cdot dx$$

 I_z Inertie de flexion autour de z

$$k_{11}^{e} = E \cdot I_{z} \cdot \left[\frac{L^{3}}{12} \cdot \frac{1}{3} \cdot \left(\frac{-6}{L^{2}} + \frac{12x}{L^{3}} \right)^{3} \right]_{0}^{L}$$

$$k_{11}^e = \frac{12 \cdot E \cdot I_z}{L^3}$$

Dimensionnement Des Structures 129

3. MEF APPLIQUEE AUX POUTRES

Matrice de rigidité élémentaire d'une poutre droite en flexion dans le plan xy

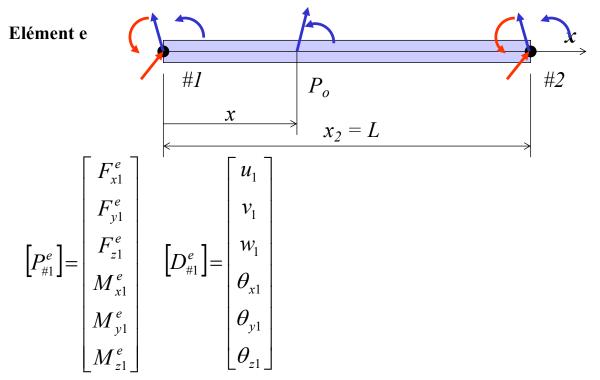
$$[K^e] = \frac{E \cdot I_z}{L^3} \cdot \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$$

Relation efforts - déplacements

$$\begin{bmatrix} F_{y1}^{e} \\ M_{z1}^{e} \\ F_{y2}^{e} \\ M_{z2}^{e} \end{bmatrix} = \underbrace{\frac{E \cdot I_{z}}{L^{3}}}_{} \cdot \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix}}_{} \cdot \begin{bmatrix} v_{1} \\ \theta_{z1} \\ v_{2} \\ \theta_{z2} \end{bmatrix}$$

Matériau, longueur de l'élément, section droite de l'élément

3.2 Matrice de rigidité d'un élément libre poutre droite à 2 nœuds



Dimensionnement Des Structures

131

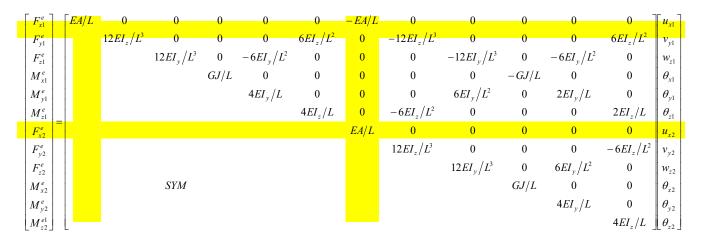
3. MEF APPLIQUEE AUX POUTRES

Matrice de rigidité élémentaire d'une poutre droite générale

- Traction compression
- Torsion
- Flexion dans 2 plans

$$\begin{bmatrix} \mathsf{F}_{\mathsf{v}1}^{\mathsf{e}} \\ \mathsf{F}_{\mathsf{y}1}^{\mathsf{e}} \\ \mathsf{F}_{\mathsf{v}1}^{\mathsf{e}} \\ \mathsf{F}_{\mathsf{v}1}^{\mathsf{e}} \\ \mathsf{M}_{\mathsf{v}1}^{\mathsf{e}} \\ \mathsf{M}_{\mathsf{v}1}^{\mathsf{e}} \\ \mathsf{M}_{\mathsf{v}1}^{\mathsf{e}} \\ \mathsf{F}_{\mathsf{v}2}^{\mathsf{e}} \\ \mathsf{M}_{\mathsf{v}2}^{\mathsf{e}} \\ \mathsf{M}_{\mathsf{v}2}^{\mathsf{e$$

Application: cas traction – compression seule:



$$\begin{bmatrix} F_{x1} \\ F_{x2} \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & -\frac{EA}{L} \\ -\frac{EA}{L} & \frac{EA}{L} \end{bmatrix} \cdot \begin{bmatrix} u_{x1} \\ u_{x2} \end{bmatrix}$$

Dimensionnement Des Structures 133

3. MEF APPLIQUEE AUX POUTRES

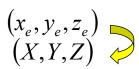
3.3 Transformation des coordonnées par rotation du repère

<u>Exemple</u>: élément poutre en traction – compression

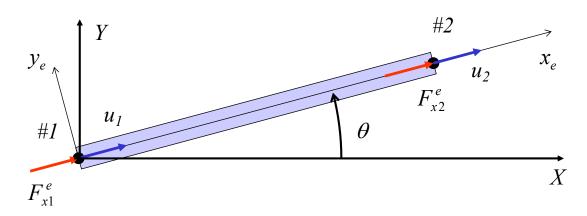
Changement de repère par rotation,

- passage du repère local ou repère de l'élément

- au repère global ou de la structure

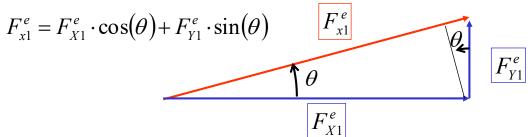


Par rotation d'angle heta



Vecteur force sur le nœud #1

Idem pour les déplacements



Sous forme matricielle:

$$\begin{bmatrix} F_{x1}^e \\ F_{x2}^e \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 & 0 \\ 0 & 0 & \cos(\theta) & \sin(\theta) \end{bmatrix} \cdot \begin{bmatrix} F_{X1}^e \\ F_{Y1}^e \\ F_{X2}^e \\ F_{Y2}^e \end{bmatrix}$$
Local Global

$$\begin{bmatrix} \lambda \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 & 0 \\ 0 & 0 & \cos(\theta) & \sin(\theta) \end{bmatrix}$$

Matrice de transformation des coordonnées

135 **Dimensionnement Des Structures**

3. MEF APPLIQUEE AUX POUTRES

Pour l'élément poutre

$$\left[P^e \right]_{x,y} = \left[\lambda \right] \cdot \left[P^e \right]_{X,Y} \qquad \left[D^e \right]_{x,y} = \left[\lambda \right] \cdot \left[D^e \right]_{X,Y}$$

Relation charge – déplacements

$$\begin{split} \left[P^{e}\right]_{x,y} &= \left[K^{e}\right]_{x,y} \cdot \left[D^{e}\right]_{x,y} \\ \left[\lambda\right] \cdot \left[P^{e}\right]_{X,Y} &= \left[K^{e}\right]_{x,y} \cdot \left[\lambda\right] \cdot \left[D^{e}\right]_{X,Y} \\ \left[P^{e}\right]_{X,Y} &= \left[\lambda\right]^{T} \cdot \left[K^{e}\right]_{x,y} \cdot \left[\lambda\right] \cdot \left[D^{e}\right]_{X,Y} \end{split} \qquad \begin{bmatrix}\lambda\right]^{-1} &= \begin{bmatrix}\lambda\right]^{T} \end{split}$$

$$[P^e]_{XY} = [K^e]_{XY} \cdot [D^e]_{XY} \quad \text{avec} \quad [K^e]_{XY} = [\lambda]^T \cdot [K^e]_{XY} \cdot [\lambda]$$

$$[K^e]_{X,Y} = [\lambda]^T \cdot [K^e]_{X,Y} \cdot [\lambda]$$

3. MEF APPLIQUEE AUX POUTRES

Exemple

$$\theta = 135^{\circ}$$

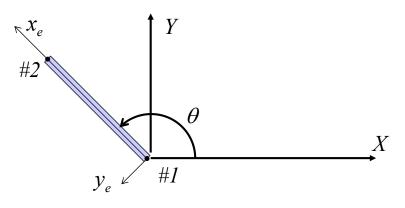
$$\cos(\theta) = \frac{-1}{\sqrt{2}}$$

$$\sin(\theta) = \frac{1}{\sqrt{2}}$$

Matrice de transformation des coordonnées

Matrice de rigidité élémentaire en traction – compression (repère <u>local</u>)

Matrice de rigidité élémentaire en traction – compression (repère <u>global</u>)



$$\begin{bmatrix} \lambda \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\left[K^{e}\right]_{x,y} = \frac{E \cdot A}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\left[K^{e}\right]_{X,Y} = \left[\lambda\right]^{T} \cdot \left[K^{e}\right]_{x,y} \cdot \left[\lambda\right]$$

Dimensionnement Des Structures 137

3. MEF APPLIQUEE AUX POUTRES

$$[K^e]_{X,Y} = \frac{E \cdot A}{2 \cdot L} \cdot \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$[K^e]_{X,Y} = \frac{E \cdot A}{2 \cdot L} \cdot \begin{bmatrix} -1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}$$

IUT Lyon 1

3. MEF APPLIQUEE AUX POUTRES

3.4 Assemblage

Energie de déformation pour un élément

$$W_{def}^{e} = \frac{1}{2} [D^{e}]^{T} \cdot [K^{e}] \cdot [D^{e}]$$

Lnergie de déformation pour la structure

$$W_{def} = \frac{1}{2} [D]^T \cdot [K] \cdot [D]$$

Principe assemblage

L'énergie de déformation totale de la structure est la somme des énergies de déformation de tous les éléments

$$\begin{split} W_{def} &= \sum_{\acute{e}l\acute{e}ments} W_{def}^e \\ \frac{1}{2} \begin{bmatrix} D \end{bmatrix}^T \cdot \begin{bmatrix} K \end{bmatrix} \cdot \begin{bmatrix} D \end{bmatrix} &= \sum_{\acute{e}l\acute{e}ments} \frac{1}{2} \begin{bmatrix} D^e \end{bmatrix}^T \cdot \begin{bmatrix} K^e \end{bmatrix} \cdot \begin{bmatrix} D^e \end{bmatrix} \\ & \text{Identification terme à terme} : \begin{bmatrix} K \end{bmatrix} \end{split}$$

Dimensionnement Des Structures 139

3. MEF APPLIQUEE AUX POUTRES

Exemple (2 éléments poutre en traction – compression)

$$F_{x1}^{e}$$
 u_1 Elément 1 F_{x2}^{e} u_2 Elément 2 F_{x3}^{e} u_3

#1

#2

commun

$$\begin{split} W_{def} &= \sum_{\acute{e}l\acute{e}ments} W_{def}^e \\ &\frac{1}{2} \begin{bmatrix} D \end{bmatrix}^T \cdot \begin{bmatrix} K \end{bmatrix} \cdot \begin{bmatrix} D \end{bmatrix} = \sum_{e=1}^2 \frac{1}{2} \begin{bmatrix} D^e \end{bmatrix}^T \cdot \begin{bmatrix} K^e \end{bmatrix} \cdot \begin{bmatrix} D^e \end{bmatrix} \\ &\frac{1}{2} \begin{bmatrix} D \end{bmatrix}^T \cdot \begin{bmatrix} K \end{bmatrix} \cdot \begin{bmatrix} D \end{bmatrix} = \frac{1}{2} \begin{bmatrix} D^1 \end{bmatrix}^T \cdot \begin{bmatrix} K^1 \end{bmatrix} \cdot \begin{bmatrix} D^1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} D^2 \end{bmatrix}^T \cdot \begin{bmatrix} K^2 \end{bmatrix} \cdot \begin{bmatrix} D^2 \end{bmatrix} \end{split}$$

3. MEF APPLIQUEE AUX POUTRES

avec

$$\begin{bmatrix} K^1 \end{bmatrix} = \begin{bmatrix} K^2 \end{bmatrix} = \frac{E \cdot A}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} D^1 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \begin{bmatrix} D^2 \end{bmatrix} = \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$
$$\begin{bmatrix} K \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \qquad \begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

Soit:
$$\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \cdot \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & K & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} =$$

$$\begin{bmatrix} u_1 & u_2 \end{bmatrix} \cdot \frac{E \cdot A}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} u_2 & u_3 \end{bmatrix} \cdot \frac{E \cdot A}{L} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$

Dimensionnement Des Structures 141

3. MEF APPLIQUEE AUX POUTRES

$$\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \cdot \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & K & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} =$$

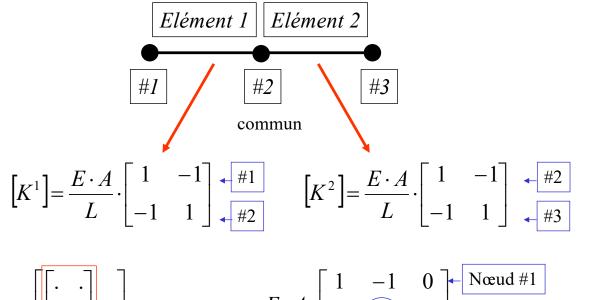
$$\frac{E \cdot A}{L} \cdot \left[\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right. \\ \left. + \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \right)$$

Identification membre à membre :

$$[K] = \frac{E.A}{L} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

3. MEF APPLIQUEE AUX POUTRES

Règle pratique pour l'assemblage d'éléments poutres colinéaires

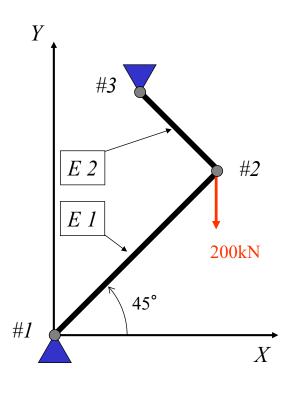


$$[K] = \begin{bmatrix} \cdot & \cdot \\ \cdot & \vdots \\ \cdot & \cdot \end{bmatrix}$$

Dimensionnement Des Structures 143

4. EXEMPLE DE REFERENCE

4.1 Cahier des charges



4. EXEMPLE DE REFERENCE

DONNEES

Elément 1 : longueur LElément 2 : longueur L/2

Elément 1&2 : section carrée 30x30

Matériau E=200GPa

Uniquement traction-compression dans les barres car :

- toutes liaisons -> articulations
- action extérieures -> liaisons

DETERMINER

- matrices de rigidité locale
- matrice de rigidité globale
- déplacements et réactions aux nœuds
- efforts dans les barres

Dimensionnement Des Structures 145

4. EXEMPLE DE REFERENCE

4.2 Matrices de rigidité élémentaire

$$\left[K^{1}\right]_{x_{1},y_{1}} = \frac{E.A}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\left[K^{e}\right]_{X,Y} = \left[\lambda\right]^{T} \cdot \left[K^{e}\right]_{X,Y} \cdot \left[\lambda\right]$$

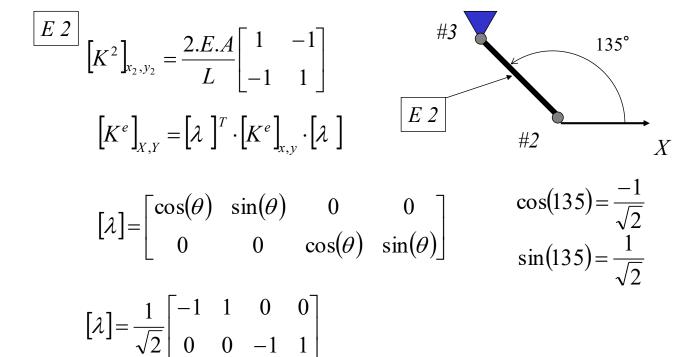
$$[\lambda] = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 & 0 \\ 0 & 0 & \cos(\theta) & \sin(\theta) \end{bmatrix}$$

$$\cos(45) = \frac{1}{\sqrt{2}}$$
$$\sin(45) = \frac{1}{\sqrt{2}}$$

$$\begin{bmatrix} \lambda \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Dimensionnement Des Structures 147

4. EXEMPLE DE REFERENCE



149 **Dimensionnement Des Structures**

4. EXEMPLE DE REFERENCE

4.3 Matrices de rigidité globale

$$[K]_{X,Y} = 2.10^{5}$$

$$\begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 \\ \hline & 3 & -1 & -2 & 2 \\ & & 3 & 2 & -2 \\ & & & 2 & -2 \\ & & & & 2 \end{bmatrix}$$

4.4 Déplacements & réactions aux nœuds

$$[P] = [K] \cdot [D]$$

$$\begin{bmatrix} F_{X1} \\ F_{Y1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{X1} \\ u_{Y1} \end{bmatrix} = 0$$

$$0 = \begin{bmatrix} F_{X2} \\ F_{Y2} \end{bmatrix} = 2.10^5 \begin{bmatrix} 3 & -1 & -2 & 2 \\ 3 & 2 & -2 \end{bmatrix} \begin{bmatrix} u_{X2} \\ u_{Y2} \end{bmatrix}$$

$$F_{X3} = 0$$

$$F_{Y3} = 0$$

$$2 = \begin{bmatrix} I & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\$$

Charges extérieures (forces, couples...)

Structure (Géométrie+matériau) <u>Liaisons</u> <u>Conditions aux limites</u>

Dimensionnement Des Structures 151

4. EXEMPLE DE REFERENCE

Matrice des inconnues primaires

$$0 = \begin{bmatrix} F_{X2} \\ F_{Y2} \end{bmatrix}_{X,Y} = 2.10^5 \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} u_{X2} \\ u_{Y2} \end{bmatrix}_{X,Y} ?$$

$$\begin{bmatrix} 0 \\ -2.10^5 \end{bmatrix}_{X,Y} = 2.10^5 \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} u_{X2} \\ u_{Y2} \end{bmatrix}_{X,Y}$$

$$u_{X2} = -0.125 mm$$

 $u_{Y2} = -0.375 mm$

Réactions en A & C

$$\begin{bmatrix} F_{X1} \\ F_{Y1} \\ 0 \\ -2.10^5 \\ F_{X3} \\ F_{Y3} \end{bmatrix}_{X,Y} = 2.10^5 \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 \\ 3 & -1 & -2 & 2 \\ 3 & 2 & -2 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ -0,125 \\ -0,375 \\ 0 \\ 0 \end{bmatrix}_{X,Y}$$

$$F_{X1} = 10^{5} N$$

$$F_{Y1} = 10^{5} N$$

$$F_{Y3} = -10^{5} N$$

$$F_{X3} = -10^{5} N$$

$$F_{Y3} = 10^{5} N$$

$$\sum \overrightarrow{M}_{noeud} = 0$$

$$\overrightarrow{R}=0$$

$$\sum \overrightarrow{M}_{noeud}=0$$

Dimensionnement Des Structures

4. EXEMPLE DE REFERENCE

4.5 Efforts normaux dans les éléments

$$\begin{bmatrix} u_{x1} \\ u_{x2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ -0.125 \\ -0.375 \end{bmatrix} \qquad \begin{bmatrix} u_{x1} = 0 \ mm \\ u_{x2} = -0.3536 \ mm \end{bmatrix}$$

$$u_{x1} = 0 \ mm$$

$$u_{x2} = -0.3536 \ mm$$

154

153

$$\left[P^{1}\right]_{x_{1},y_{1}}=\left[K^{1}\right]\cdot\left[D^{1}\right]_{x_{1},y_{1}}$$

$$\begin{bmatrix} F_{x1}^1 \\ F_{x2}^1 \end{bmatrix}_{x_1, y_1} = \frac{E.A}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -0.3536 \end{bmatrix}$$

$$F_{x1}^{1} = 141 \, kN$$

$$F_{x2}^{1} = -141 \, kN$$
Elément 1 comprimé

155 **Dimensionnement Des Structures**

4. EXEMPLE DE REFERENCE

$$\left[D^2\right]_{x_2,y_2} = \left[\lambda\right] \cdot \left[D^2\right]_{X,Y}$$

$$[D^2]_{x_2, y_2} = [\lambda] \cdot [D^2]_{X, Y}$$

$$[\lambda] = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} u_{x2} \\ u_{x3} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_{X2} \\ u_{Y2} \\ u_{X3} \\ u_{Y3} \end{bmatrix}$$

$$\begin{bmatrix} u_{x2} \\ u_{x3} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} -0.125 \\ -0.375 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} u_{x2} = -0.1768 \ mm \\ u_{x3} = 0 \ mm \end{bmatrix}$$

$$u_{x2} = -0.1768 \ mm$$
$$u_{x3} = 0 \ mm$$

$$\left[P^2\right]_{x_2,y_2} = \left[K^2\right] \cdot \left[D^2\right]_{x_2,y_2}$$

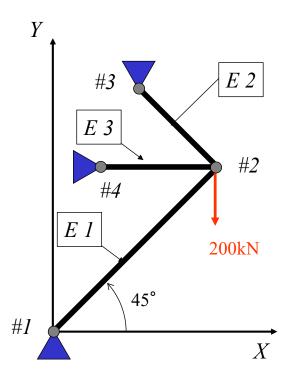
$$\begin{bmatrix} F_{x2}^2 \\ F_{x3}^2 \end{bmatrix}_{x_2, y_2} = \frac{2.E.A}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -0.1768 \\ 0 \end{bmatrix}$$

$$F_{x2}^{1} = -141 \, kN$$
$$F_{x3}^{1} = 141 \, kN$$

Elément 2 tendu

Dimensionnement Des Structures 157

4.6 Modification de la structure



4. EXEMPLE DE REFERENCE

DONNEES

Elément 1 : longueur LElément 2 : longueur L/2Elément 3 : longueur L/2

Elément 1, 2 & 3:

Section carrée 30x30 Matériau E=200GPa

DETERMINER

- matrices de rigidité locale
- matrice de rigidité globale
- déplacements et réactions aux nœuds
- efforts dans les barres

Bibliographie

J-F Imbert	Analyse des structures par la méthode éléments finis	Cépaduès Editions
Ph Trompette	Mécanique des structures par la méthode éléments finis. Statique et dynamique	Masson
D Gay J Gambelin	Une approche simple de la méthode éléments finis	Hermès
G. Dhatt J-l Batoz	Modélisation des structures par éléments finis	Hermès
Zienkiewicz Taylor	Finite element method	Mac Graw - Hill
M. Brunet	Introduction à la méthode éléments finis	Cours INSA Lyon

Dimensionnement Des Structures 159

Toi aussi, tu es devenu un mécanicien!

