IV La loi de Fick

A. Enoncé:

La loi de Fick traduit la diffusion de la matiere dans un milieu binaire, par exemple des particules dans un
solvant. A I'approximation linéaire, elle décrit la proportionnalité entre le courant volumique de particules

]_,;(77, t) et le gradient de concentration des particules n, (7, t):

J.(#t) = =D grad(n,(7,t)) D : coefficient de diffusion (> 0)
/ Sucre dans I'eau, D = 0,52 e~? m?s
[ : Vapeur d’eau dans l'air (@273 K), D = 22 e~® m?s
[#m~2 s 1] [m2 s~1] #m~
[m~1]
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Le gradient est une grandeur locale (sa valeur est

B. Vocabulaire: calculée en chaque point M). On parle d’'un champ

1.) Gradient : 8 vectoriel pour grad(nv (7, t)).
an 2 — .
/ ”\ . M grad(n,) est perpendiculaire aux surfaces de
aax x4 niveau, il pointe dans la direction de la plus forte
SN n .
grad(nv(F, t)) - ay" y > y augmentation de n,,.
on, / Surface de niveau (n, constant)
0z

Remarque: un grand nombre de forces F () dérivent d’une énergie potentielle V (7#)

F(#) = —grad(V(#)

\—/\

Ces forces entrainent I'objet sur une trajectoire permettant de diminuer I’énergie potentielle V(7) de l'objet de

la maniere la plus « rapide ». ,4
| m
Energie potentielle de pesanteur V= mgz — Force de pesanteur F = —mg e, ie, Iﬁ
. . , . = 1 N
Energie potentielle électrostatique V = B2, Force de coulombF = iz

4mEy T 4meg r2 T
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B. Vocabulaire:
2.) Flux et courant

dS = dS 711 : Surface élémentaire  n, (7, t): nombre de particules par unité de volume a un instant donné

U: vitesse moyenne des particules/molécules
n n: vecteur unitaire perpendiculaire a dS
G —
U

dN : nombre de particules de vitesse U passant au travers de dS durant dt

dN =7 -UdtdS x n, (7 t
T Dolume V(7 t) Quantité par unité de temps (flux de chaleur, de puissance,

// de particule, de photons...)
, dN _ o S i
Elémentde flux:dp =—=n-U dS xn,(r,t) [#H.s}]

dc

On peut écrire dd = 7 .ds, avecf = n, (7, t)U le courant de particules. Unité [#.m2.s7]

Flux d’un champ de vecteur j : ¢ = JJ j-dS
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C. Retour a l’équation de diffusion:

1.) Cas a une dimension
Comment sentir la variation de la densité volumique de particules/molécules en fonction du temps ?

=>» On considére un petit volume dV = dx X dS

dx
1.
z

«—> S R .
* j(x)etj(x+ dx) courants de particules en x et x + dx respectivement.
> - e * o taux de création/disparition spontané. C’est une densité volumique par unité
J Jj (x +dx) de temps [#. m3.s1]
Variation du nombre de particules/molécules dN [#] dans I'élément de volume dV = dx X dS durant une durée de temps dt:

dN = dn,, dxdS = + j(x)dSdt — j(x + dx)dSdt + odxdSdt
dn,  jx+dx)—j)
= — t+0

dt dx
dn, dj(x) Remarque: n,, j et 0 sont des
dt ~  ox to fonctions du temps et de l'espace

—_—
Par convention, dS = dS 11 avec 11 orienté vers I'extérieur du volume

g ny
VI +j(x)dS — j(x + dx)dS = —] (x)dS 77 —f (x + dx)dS 75
Z x 7 j (x + dx) Somme sur les surfaces entourant le volume (ici a 1D) de I'élément de flux —j .dS

(positif si 7 et dS de sens opposé, négatif si de méme sens).
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C. Retour a l’équation de diffusion:
2.) Cas a trois dimensions

Par convention, dS = dS 7 avec 11 orienté vers 'extérieur du volume

I > +j(x)dS — j(x + dx)dS = —j (x)dS 1y —j (x + dx)dS 7,
j (x +dx) Somme sur les surfaces entourant le volume (ici 3 1D) de I'élément de flux —j - .dS

(positif si ] et dS de sens opposé, négatif si de méme sens).

Passage a 3 dimensions

v = Variation durant une durée dt
Zx X dN = delux + stpontanée
j I\ .

Volume V df nvdvzdtjg —f.ﬁ+dtj odV
14 ) 14

Surface X
d - —
—j nvdV=—7€ j-dS+j odV
dt J, > v
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C. Retour a l’équation de diffusion:
2.) Cas a trois dimensions

d - —
—j nvdV=—fj-dS+j odV
dt Jy 5 v

Théoreme de flux-divergence (aussi appelé théoreme de Green-Ostrogradski)

. Jx
dj 9, dj > ,
div(]) = Jx Dy Tz qvec j=|Jy
i dx Jdy 0z J,
—J n,dV = —f div(f)dV+j odV
dt Jy % %
dnv . -
jv 2 div(j) —o)dV =0 Pas d’hypothése sur le volume V (il doit juste &tre fermé), on peut donc en
/ déduire la forme locale, appelée équation de continuité:
dn .
=0 - =—div(j)+o

dt
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C. Retour a l’équation de diffusion:
3.) Equation de diffusion

Opérateur Laplacien

On constate tout d’abord que div( grad(nv) ) = An,
0%n, N 0°n, 0%n,
dx?  0y?  0z?

o
0 anv d anv 6 on,

ox 0x "0y ay |0z oz on,

dy

on, /
0z

? = —div(f) + o, on va y injecter la loi de Fick j = —D grad(n,,)

dn,
dt

= —div (—D grad(nv)) +0=DAn,+ o

C’est bien I"équation de diffusion avec un terme de création/destruction !
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D. lllustration:

Prenons le cas stationnaire a une dimension et sans terme de création

dn”:() o=0

dt

0°n, 0 on, = constant = _J stationnaire signifie donc avec un
0x2 ox D courant constant

g

Loi de Fick (1D): j = —D

) n=-lrine=0)

ny(x = 0) 1
ny(x = L) -

On a donc

ny

dx
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