
IV La loi de Fick

A. Enoncé:

La loi de Fick traduit la diffusion de la matière dans un milieu binaire, par exemple des particules dans un 
solvant. A l’approximation linéaire, elle décrit la proportionnalité entre le courant volumique de particules 
𝐽𝐽𝑛𝑛 𝑟𝑟, 𝑡𝑡 et le gradient de concentration des particules 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡 :

𝐽𝐽𝑛𝑛 𝑟𝑟, 𝑡𝑡 = −𝐷𝐷 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡

# 𝑚𝑚−2 𝑠𝑠−1 𝑚𝑚2 𝑠𝑠−1
𝑚𝑚−1

# 𝑚𝑚−3

𝐷𝐷 : coefficient de diffusion > 0
Sucre dans l’eau, 𝐷𝐷 = 0,52 𝑒𝑒−9 m²/s
Vapeur d’eau dans l’air (@273 K), 𝐷𝐷 = 22 𝑒𝑒−6 m²/s

Liquide Particules / molécules

𝑛𝑛𝑣𝑣 augmente
Sens du gradient
Sens du courant

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡
𝐽𝐽𝑛𝑛 𝑟𝑟, 𝑡𝑡

Interface fictive
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IV La loi de Fick

B. Vocabulaire:
1.) Gradient

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡 =

𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥
𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝜕𝜕

x

y z

𝑟𝑟

Surface de niveau (𝑛𝑛𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

Le gradient est une grandeur locale (sa valeur est 
calculée en chaque point M). On parle d’un champ 
vectoriel pour 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡 .

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 est perpendiculaire aux surfaces de 
niveau, il pointe dans la direction de la plus forte 
augmentation de 𝑛𝑛𝑣𝑣.

Remarque: un grand nombre de forces 𝐹⃗𝐹 𝑟𝑟 dérivent d’une énergie potentielle 𝑉𝑉 𝑟𝑟

8
5

2
M

𝐹⃗𝐹 𝑟𝑟 = −𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉 𝑟𝑟

Ces forces entrainent l’objet sur une trajectoire permettant de diminuer l’énergie potentielle 𝑉𝑉 𝑟𝑟 de l’objet de 
la manière la plus « rapide ».

Energie potentielle de pesanteur 𝑉𝑉 = 𝑚𝑚𝑚𝑚𝑚𝑚 → Force de pesanteur 𝐹⃗𝐹 = −𝑚𝑚𝑚𝑚 𝑒𝑒𝑧𝑧

Energie potentielle électrostatique 𝑉𝑉 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞1𝑞𝑞2
𝑟𝑟

→ Force de coulomb𝐹⃗𝐹 = 1
4𝜋𝜋𝜀𝜀0

𝑞𝑞1𝑞𝑞2
𝑟𝑟2

𝑒𝑒𝑟𝑟

z

𝑒𝑒𝑧𝑧

m

𝐹⃗𝐹



IV La loi de Fick

B. Vocabulaire:
2.) Flux et courant

𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡 : nombre de particules par unité de volume à un instant donné 

𝑈𝑈

𝑈𝑈: vitesse moyenne des particules/molécules

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑛𝑛 : Surface élémentaire

𝑛𝑛 � 𝑈𝑈 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑛𝑛 𝑛𝑛: vecteur unitaire perpendiculaire à dS

𝑑𝑑𝑑𝑑 : nombre de particules de vitesse 𝑈𝑈 passant au travers de 𝑑𝑑𝑑𝑑 durant 𝑑𝑑𝑑𝑑

𝑑𝑑𝑁𝑁 = 𝑛𝑛 � 𝑈𝑈 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

× 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡

Elément de flux: 𝑑𝑑φ = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑛𝑛 � 𝑈𝑈 𝑑𝑑𝑑𝑑 × 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡 [#.s-1]

Quantité par unité de temps (flux de chaleur, de puissance, 
de particule, de photons…)

On peut écrire 𝑑𝑑φ = 𝑗𝑗 � 𝑑𝑑𝑑𝑑, avec 𝑗𝑗 = 𝑛𝑛𝑣𝑣 𝑟𝑟, 𝑡𝑡 𝑈𝑈 le courant de particules. Unité [#.m-2.s-1]

Flux d’un champ de vecteur 𝑗𝑗 : φ = ∬𝑆𝑆 𝑗𝑗 � 𝑑𝑑𝑑𝑑



IV La loi de Fick

C. Retour à l’équation de diffusion:
1.) Cas à une dimension

Comment sentir la variation de la densité volumique de particules/molécules en fonction du temps ?
 On considère un petit volume 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 × 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜎𝜎y

z x 𝑗𝑗 𝑥𝑥 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑

• 𝑗𝑗 𝑥𝑥 et 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 courants de particules en 𝑥𝑥 et 𝑥𝑥 + 𝑑𝑑𝑑𝑑 respectivement.
• 𝜎𝜎 taux de création/disparition  spontané. C’est une densité volumique par unité 

de temps  [#. m-3.s-1]

Variation du nombre de particules/molécules 𝑑𝑑𝑑𝑑 [#] dans l’élément de volume 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 × 𝑑𝑑𝑑𝑑 durant une durée de temps 𝑑𝑑𝑑𝑑:
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑛𝑛𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 = + 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑 = −

𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 − 𝑗𝑗 𝑥𝑥
𝑑𝑑𝑑𝑑 + 𝜎𝜎

𝑑𝑑𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑 = −

𝜕𝜕𝑗𝑗 𝑥𝑥
𝜕𝜕𝜕𝜕 + 𝜎𝜎

Remarque: 𝑛𝑛𝑣𝑣, j et 𝜎𝜎 sont des 
fonctions du temps et de l’espace

y

z x 𝑗𝑗 𝑥𝑥 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑

Par convention, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑛𝑛 avec 𝑛𝑛 orienté vers l’extérieur du volume
+ 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 − 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = −𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑛𝑛1 −𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑛𝑛2
Somme sur les surfaces entourant le volume (ici à 1D) de l’élément de flux −𝑗𝑗 � 𝑑𝑑𝑑𝑑
(positif si  𝑗𝑗 et 𝑑𝑑𝑑𝑑 de sens opposé, négatif si de même sens).

𝑛𝑛1 𝑛𝑛2



C. Retour à l’équation de diffusion:
2.) Cas à trois dimensions

IV La loi de Fick

y

z x 𝑗𝑗 𝑥𝑥 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑

Par convention, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 𝑛𝑛 avec 𝑛𝑛 orienté vers l’extérieur du volume
+ 𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 − 𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = −𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑛𝑛1 −𝑗𝑗 𝑥𝑥 + 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑛𝑛2
Somme sur les surfaces entourant le volume (ici à 1D) de l’élément de flux −𝑗𝑗 � 𝑑𝑑𝑑𝑑
(positif si  𝑗𝑗 et 𝑑𝑑𝑑𝑑 de sens opposé, négatif si de même sens).

𝑛𝑛1 𝑛𝑛2

Passage à 3 dimensions

Volume 𝑉𝑉
Surface Σ

y

z x
𝑗𝑗

𝑛𝑛
Variation durant une durée 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑑𝑑𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑�
𝑉𝑉
𝑛𝑛𝑣𝑣𝑑𝑑𝑉𝑉 = 𝑑𝑑𝑑𝑑�

Σ
−𝑗𝑗 � 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑�

𝑉𝑉
𝜎𝜎𝑑𝑑𝑉𝑉

𝑑𝑑
𝑑𝑑𝑡𝑡�𝑉𝑉

𝑛𝑛𝑣𝑣𝑑𝑑𝑉𝑉 = −�
Σ
𝑗𝑗 � 𝑑𝑑𝑑𝑑 + �

𝑉𝑉
𝜎𝜎𝑑𝑑𝑉𝑉



C. Retour à l’équation de diffusion:
2.) Cas à trois dimensions

IV La loi de Fick

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑉𝑉
𝑛𝑛𝑣𝑣𝑑𝑑𝑉𝑉 = −�

Σ
𝑗𝑗 � 𝑑𝑑𝑑𝑑 + �

𝑉𝑉
𝜎𝜎𝑑𝑑𝑉𝑉

Théorème de flux-divergence (aussi appelé théorème de Green-Ostrogradski) 

𝑑𝑑
𝑑𝑑𝑑𝑑�𝑉𝑉

𝑛𝑛𝑣𝑣𝑑𝑑𝑉𝑉 = −�
𝑉𝑉
𝑑𝑑𝑑𝑑𝑑𝑑 𝚥𝚥 𝑑𝑑𝑑𝑑 + �

𝑉𝑉
𝜎𝜎𝑑𝑑𝑉𝑉

�
𝑉𝑉

𝑑𝑑𝑛𝑛𝑣𝑣
𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝚥𝚥 − 𝜎𝜎 𝑑𝑑𝑉𝑉 = 0 Pas d’hypothèse sur le volume V (il doit juste être fermé), on peut donc en 

déduire la forme locale, appelée équation de continuité:

𝑑𝑑𝑛𝑛𝑣𝑣
𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗 + 𝜎𝜎

𝑑𝑑𝑑𝑑𝑑𝑑 𝚥𝚥 =
𝜕𝜕𝑗𝑗𝑥𝑥
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑗𝑗𝑦𝑦
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑗𝑗𝑧𝑧
𝜕𝜕𝑧𝑧

𝚥𝚥 =
𝑗𝑗𝑥𝑥
𝑗𝑗𝑦𝑦
𝑗𝑗𝑧𝑧

avec

= 0



C. Retour à l’équation de diffusion:
3.) Equation de diffusion

IV La loi de Fick

On constate tout d’abord que 𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 = ∆𝑛𝑛𝑣𝑣

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥

+
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥
𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝜕𝜕

𝜕𝜕2𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑛𝑛𝑣𝑣
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑛𝑛𝑣𝑣
𝜕𝜕𝑧𝑧2

Opérateur Laplacien

On vient de montrer l’équation de continuité 𝑑𝑑𝑛𝑛𝑣𝑣
𝑑𝑑𝑑𝑑

= −𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗 + 𝜎𝜎, on va y injecter la loi de Fick 𝚥𝚥 = −𝐷𝐷 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣

𝑑𝑑𝑛𝑛𝑣𝑣
𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑𝑑𝑑 −𝐷𝐷 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛𝑣𝑣 + 𝜎𝜎 = 𝐷𝐷 ∆𝑛𝑛𝑣𝑣 + 𝜎𝜎

C’est bien l’équation de diffusion avec un terme de création/destruction !



D. Illustration:

IV La loi de Fick

Prenons le cas stationnaire à une dimension et sans terme de création

𝜎𝜎 = 0𝑑𝑑𝑛𝑛𝑣𝑣
𝑑𝑑𝑑𝑑

= 0

On a donc 𝜕𝜕2𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥2 = 0

𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≡ −
𝑗𝑗
𝐷𝐷

Loi de Fick (1D):  𝑗𝑗 = −𝐷𝐷
𝜕𝜕𝑛𝑛𝑣𝑣
𝜕𝜕𝑥𝑥

𝑛𝑛𝑣𝑣 = −
𝑗𝑗
𝐷𝐷 𝑥𝑥 + 𝑛𝑛𝑣𝑣 𝑥𝑥 = 0

Stationnaire signifie donc avec un 
courant constant

𝑛𝑛𝑣𝑣

𝑛𝑛𝑣𝑣 𝑥𝑥 = 0
𝑛𝑛𝑣𝑣 𝑥𝑥 = 𝐿𝐿

𝐿𝐿
𝑥𝑥
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