Généralités sur les virus

Dr Laurence JOSSET

MALADIES INFECTIEUSES – MICROBIOLOGIE
DFGSM3 2025-2026

Déclaration de liens d'intérêt – art. L.4113-13 CSP

□ Pour cet enseignement, je déclare les liens d'intérêt suivants avec des organismes produisant ou exploitant des produits de santé ou avec des organismes de conseil intervenant sur ces produits :

Nom de l'organisme	Nature du lien	Année

Pour cet enseignement, je déclare n'avoir **aucun lien d'intérêt** avec des organismes produisant ou exploitant des produits de santé ou avec des organismes de conseil intervenant sur ces produits.

OBJECTIFS

 Objectif 1 : comprendre les éléments de la structure des virus, leur classification, et le cycle de réplication des virus

Objectif 2 : comprendre les différents types d'infection virale

Objectif 3 : comprendre les mécanismes d'action des antiviraux

Objectif 4 : comprendre les outils du diagnostic virologique

- 1. Structure et morphologie des virus
- 2. Physiopathologie des infections virales (B)
- 3. Mécanismes d'action des antiviraux
- 4. Méthodes (outils) du diagnostic virologique
- 5. Cas cliniques

CONNAISSANCES ANTERIEURES

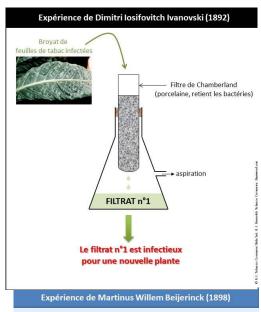
- Connaissances antérieures de biologie moléculaire:
 - Réplication, retro-transcription, transcription, traduction.
 - PCR

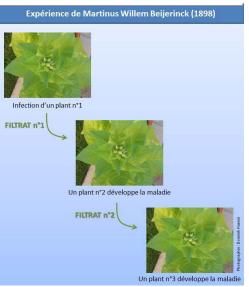
 Connaissance de base d'immunologie : réponse immunitaire post-infectieuse

Structure et morphologie des virus

Qu'est-ce qu'un virus?

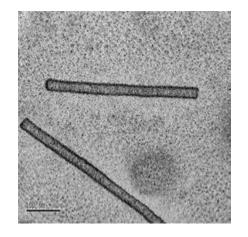
Louis Pasteur et Robert Koch : théorie germinale en 1880


- Pour chaque maladie infectieuse, on peut trouver un microorganisme spécifique.
- Celui-ci :
 - 1. est visible au microscope,
 - 2. peut être cultivé sur un milieu nutritif approprié.
 - 3. est retenu par le filtre Chamberland


Première découverte de virus

- 1881 : Pasteur -> l'agent infectieux responsable de la rage est :
 - invisible au microscope
 - non cultivable
 - peut être inoculé d'un broyat de cerveau de chien enragé à la surface du cerveau d'un lapin trépané.
- 1885 : 1ere **vaccination** antirabique chez l'homme

Première découverte de virus : le virus de la mosaïque du 9/72 tabac


- 1882 : Ivanovski
 - un extrait de feuille malade reste infectieux après filtration à travers un filtre de Chamberland = agent pathogène filtrant.
 - Hypothèse : toxine de bactérie, ou petite bactérie
- 1889 : Beijerinck
 - Transmission après plusieurs passages sur plantes et filtration par filtre de Chamberland
 - = "contagium vivum fluidum" (fluide vivant contagieux)

Qu'est ce qu'un virus?

Beijerinck, 1898 : première utilisation scientifique du terme virus pour désigner agent infectieux ultra-filtrable

en latin : virus = liquide purulent, nauséabond et infectieux)

virus de la mosaïque du tabac (TMV) 1^{ère} observation en microscopie électronique en **1939**

Définition « moderne » des virus (Lwoff, 1957)



Entité nucléoprotéique :

- possédant un seul type d'acide nucléique (ADN ou ARN) = génome viral
- 2. parasite intracellulaire obligatoire (incapacité à se multiplier hors de la cellule)
- 3. multiplication par réplication de leur seul génome
- 4. Pas de division binaire

Constituants des virus

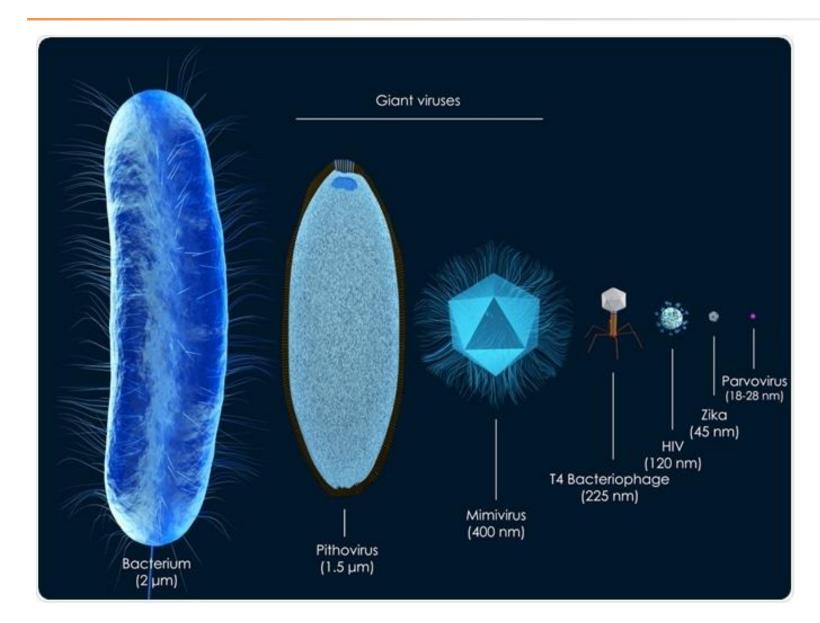
• **Génome viral** : ADN ou ARN, contient l'ensemble des informations génétiques nécessaires à la réplication virale



Capside : Protéines virales entourant le génome.

• **Enveloppe** : Membrane lipidique et protéines virales, facultative, entoure la nucléocapside.

Virus nu

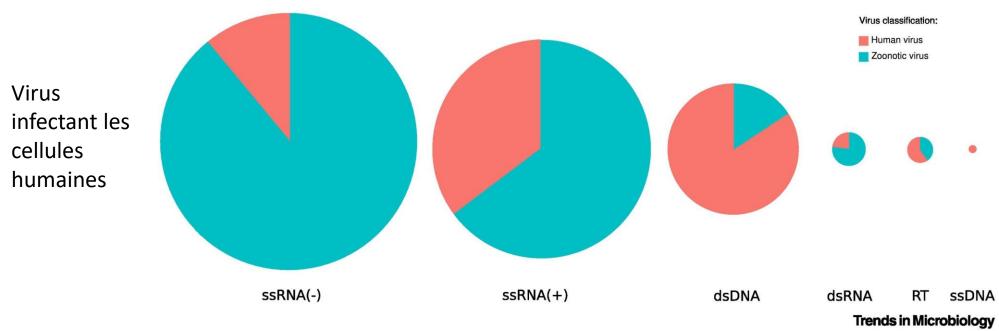


Virus enveloppé

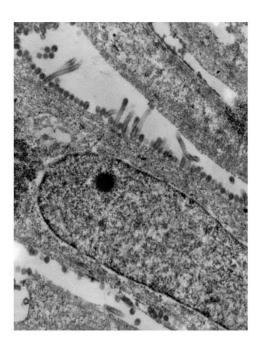
Grande diversité : taille

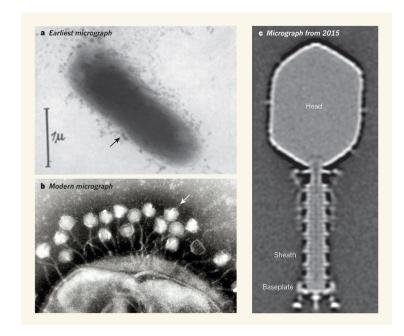
Taille : 1 μm (virus géants) à 20 nm

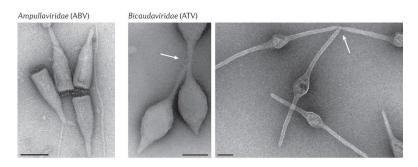
Grande diversité: structure

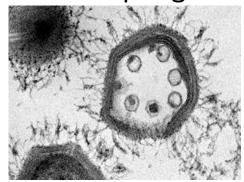

- Capside : hélicoïdale, icosaédrique ou complexe
- Virus nu ou enveloppé

Grande diversité: génome


- ADN ou ARN
- Simple brin (ss) ou double brin (ds)
- Linéaire ou circulaire
- Segmenté ou non segmenté
- De 2 kb (virus défectif) à 2,5 Mb (pandoravirus)


Grande diversité : cellule hôte


Virus infectant les cellules eucaryotes


Virus infectant les bactéries : bactériophages

Virus infectant les archées

Virus infectant d'autres virus : virophages

La diversité de la virosphère reste très mal connue

Seuls 0,1% de la virosphère est connue

~10 000 espèces virales connues

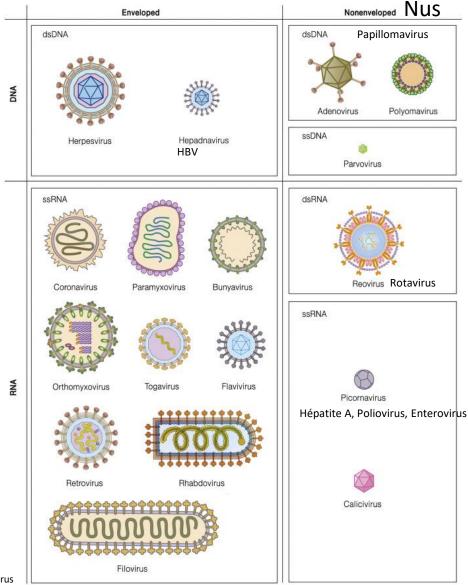
Viruses known to infect humans 263

Estimated number of undiscovered viruses harbored by mammals and birds 1,670,000

Estimated number that could infect humans 631,000-827,000

Earth virome 10 millions d'espèces

Classification des virus : selon leur structure



ENVELOPPE

La structure confère des propriétés :

- ARN = variabilité
- Enveloppe = fragilité => rôle dans la transmission

GENOME

Taxonomie des virus : imparfaite

Taxonomie théorique :

- Ordre (-virales)
- <u>Famille</u> (-viridae)
 - Genre (-virus)
 - Espèce

Exemples:

Ordre : ?

• Famille: Picornaviridae

• **Genre**: Enterovirus

• **Espèce**: Human Enterovirus type A

• Sérotype : EV-71, CV-A16

• **Ordre** : *Mononegavirales*

• Famille: Orthomyxoviridae

• **Genre**: Influenzavirus A

• **Espèce** : influenza A virus

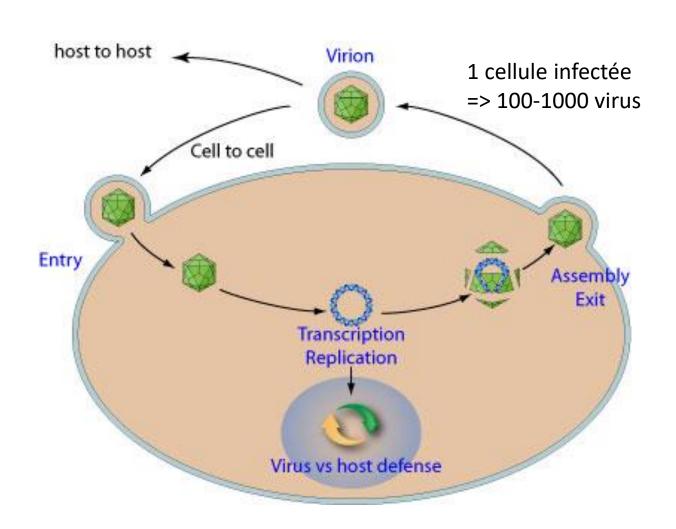
Sous-type: H1N1

Ordre : Nidovirales

• Famille: Coronaviridae

Genre : Betacoronavirus

• Espèce : SARS coronavirus 2, ...

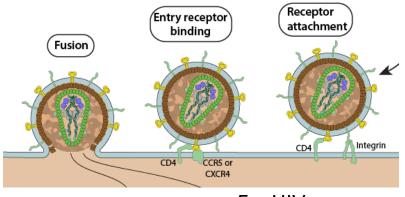

Etapes du cycle productif classique de réplication des

1. Entrée du virus

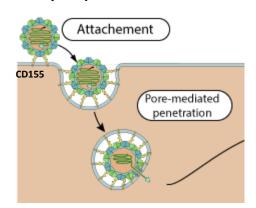
virus

- Attachement
- Pénétration
- Décapsidation
- 2. Transcription et réplication du génome viral
 - Synthèse des ARNm puis des protéines virales
 - Réplication du génome
- 3. Assemblage et libération des virions

A chaque étape, le virus détourne la machinerie cellulaire


1. Entrée du virus

1. Attachement = interaction entre des protéines virales et des récepteurs spécifiques de la cellule hôte => tropisme


2. Pénétration

 Virus enveloppés : Fusion de l'enveloppe avec la membrane cellulaire

Ex: HIV

 Virus nus: formation de vésicule d'endocytose ou de pores membranaires => libération du contenu de la capside dans le cytoplasme

Ex: Poliovirus

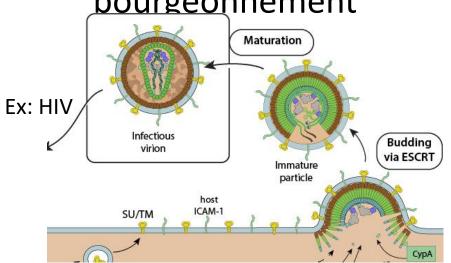
3. Décapsidation

2. Transcription et réplication du génome viral

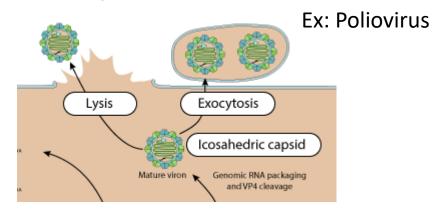
Virus ADN:

- <u>Transcription</u> par des polymérases cellulaires (sauf poxviridae)
- <u>Réplication</u> par des polymérases cellulaires (ex : HPV, Parvoviridae) OU virales (ex : HSV, AdV)
- Dans le noyau de la cellule (sauf poxviridae)

Virus ARN:


- Transcription :
 - Virus ARN(+) = le génome est un ARNm
 - Virus ARN(-): par des polymérases virales
- <u>Réplication</u> par des polymérases virales
- Dans le cytoplasme (sauf orthomyxoviridae, retroviridae)

3. Assemblage et libération


Virus enveloppés :

- assemblage de la capside puis acquisition de la membrane
- Libération par bourgeonnement

Virus nus:

- Auto-assemblage de la capside et empaquetage ou injection du génome
- Libération par lyse ou exocytose

Conséquences cellulaires de la réplication virale

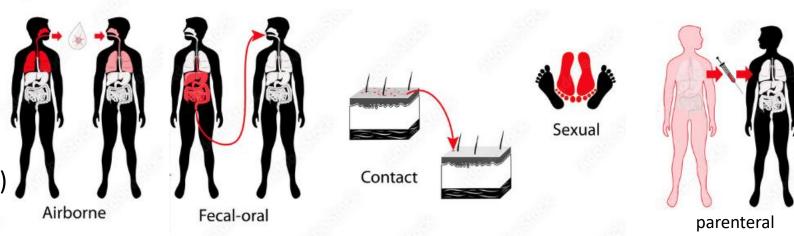
- Pour permettre la multiplication virale, la cellule doit être :
 - sensible = avoir les récepteurs
 - Permissive = autoriser un cycle viral complet
- Devenir des cellules infectées :
 - Lyse de la cellule (ex : picornaviridae...)
 - Transformation en cellule cancéreuse (ex : papillomavirus..)
 - Tolérance de l'infection (ex : Herpesvirus...)

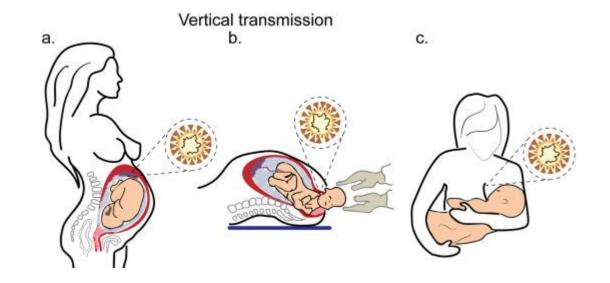
Physiopathologie des infections virales

Spectre d'hôte, réservoir viral

- Spectre d'hôte d'un virus défini par :
 - L'espèce animale et
 - Le tissu cellulaire qu'il peut infecter.
 - => spectre très large (ex : influenza A) ou plus étroit (ex : influenza B et C)

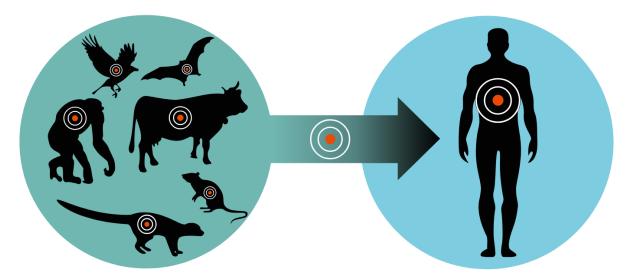
• Réservoir du virus :


- Réservoir humain pour la plupart
- Hôte intermédiaire (arbovirus)
- Réservoir animal (ex: rage, ebola, virus influenza A)


Les différents modes de transmission

Interhumaine

- Horizontale
 - Aérienne
 - Fécale-orale
 - Contact (direct ou indirect)
 - Sexuelle
 - Parentérale
- Verticale = de la mère à l'enfant
 - In utero
 - Per partum
 - Post-natale



Les différents modes de transmission

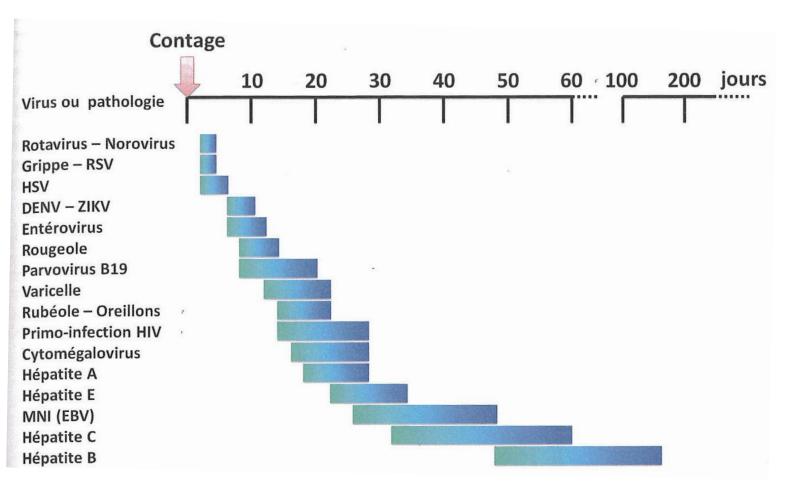
Zoonose = transmission des animaux à l'homme

- par contact direct
- par l'intermédiaire de **l'environnement**
- par la consommation d'aliments d'origine animale contaminés
- par l'intermédiaire d'un vecteur arthropode (moustique, moucheron piqueur, tique) = arbovirose

Chez les humains, les zoonoses représentent

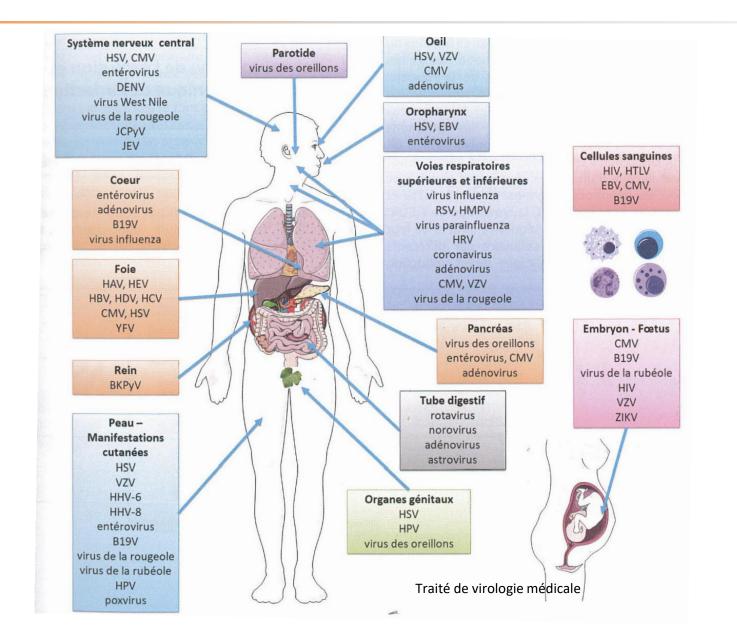
60 % de toutes les maladies infectieuses et 75 % des maladies infectieuses émergentes.

Infection localisée ou généralisée


	Infection localisée	Infection généralisée
Porte d'entrée	Respiratoire, Digestive, cutanéomuqueuse	Idem + Sanguine
Multiplication initiale	Porte d'entrée	
Dissémination	Non	Par voie sanguine (virémie), lymphatique, ou neuronale
Multiplication secondaire dans d'autres organes	Non	Organe cible à distance de la porte d'entrée
Durée d'incubation	Quelques jours	> 2 semaines
Exemples	Grippe, Virus des gastroentérites, papillomavirus	VIH, CMV, EBV, Poliovirus, Virus des hépatites

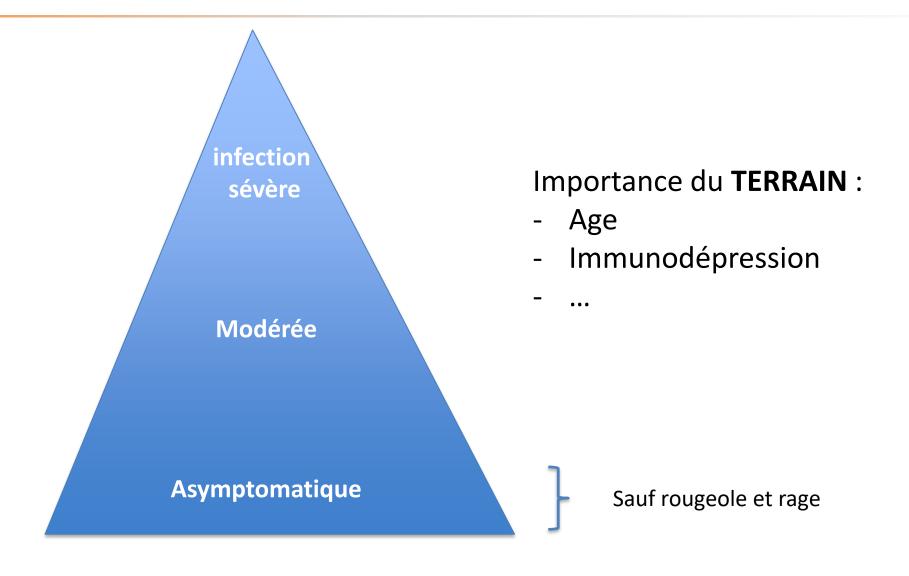
Durée d'incubation des principales infections virales

humaines



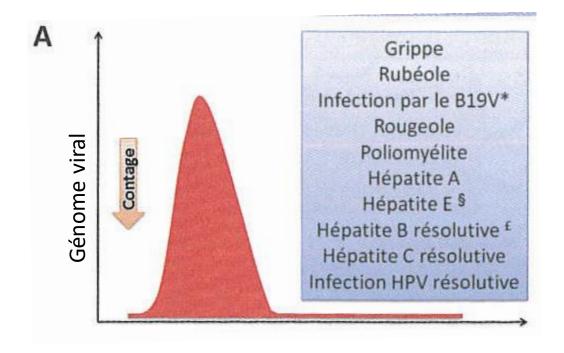
Incubation = période allant du contage à l'apparition des 1^{ers} signes cliniques

Organe cible des infections virales



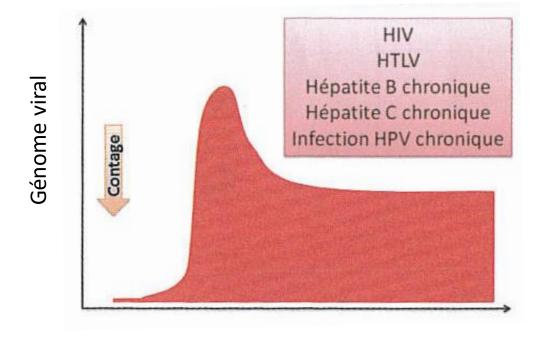
Liste non exhaustive

Conséquences cliniques de l'infection



Types d'infection virales selon leurs évolutions

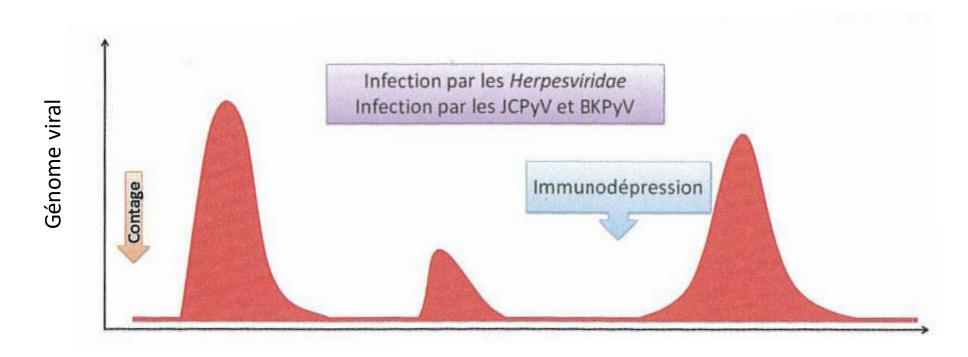
1. Infection aiguë avec disparition du virus



Types d'infection virales selon leurs évolutions

2. Infection aiguë suivie d'une infection chronique

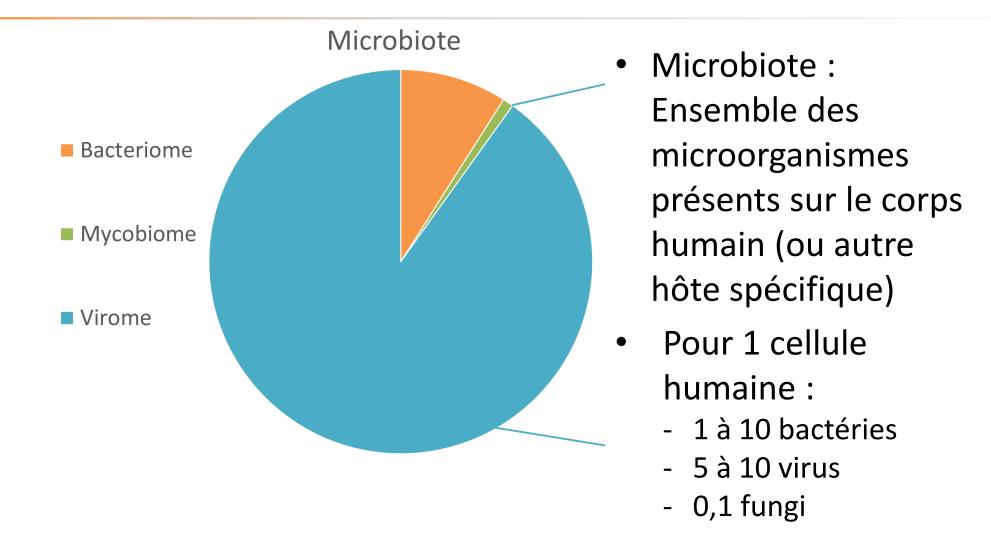
infection chronique = persistance du virus sous forme réplicative



Types d'infection virales selon leurs évolutions

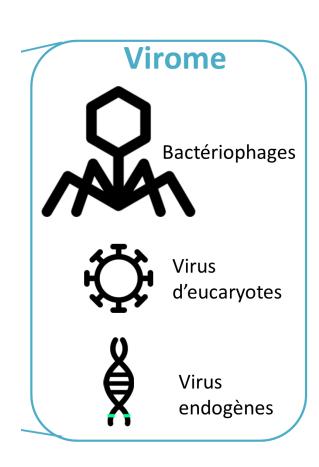
3. Infection aiguë suivie d'une infection latente +/- réactivations

infection latente = persistance du virus sous forme non réplicative


Virus et cancer

- 7 virus cancérogènes chez l'homme
 - EBV : lymphome et carcinome indifférencié du nasopharynx
 - Virus de l'hépatite B et C : hépatocarcinomes
 - HTLV-1 : lymphomes à cellules T
 - HHV8 : sarcome de Kaposi
 - Papillomavirus (HPV): cancers gynécologiques, (anaux, péniens ou des voies aéro-digestives supérieures)
 - Polyomavirus de Merkel : carcinome cutané
- Mécanismes de cancérogénèse viro-induite : direct et/ou indirects
- Prévention :
 - Vaccin : HBV et HPV
 - Dépistage systématique du cancer du col de l'utérus

Place du virome au sein du microbiote



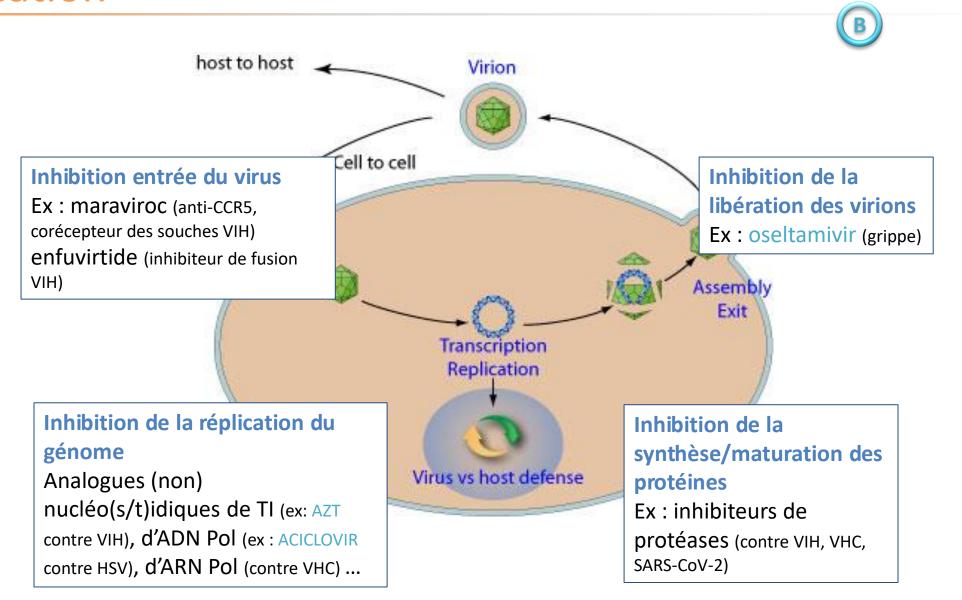
Virome = partie virale du microbiote

Composition du virome

- Virus de procaryotes bactériens (bactériophages)
- Virus d'eucaryotes :
 - Virus responsables d'infections aigües, chroniques (VIH, VHB, VHC...) ou latentes (Herpesviridae...)
 - Peuvent être non pathogènes (anelloviridae...)
- Virus endogènes (8% du génome humain)

Mécanismes d'action des biocides et antiviraux

Biocides = Antiseptiques ou désinfectants

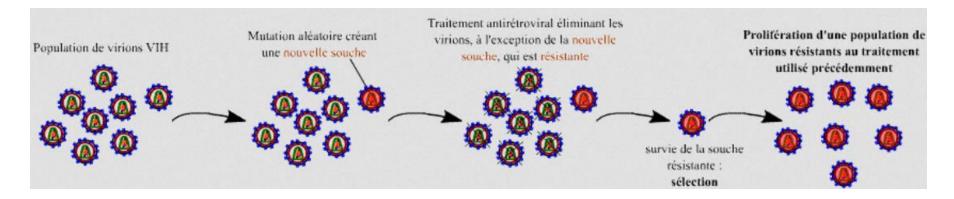

- Action virucide = Destruction des micro-organismes => perte du pouvoir infectieux
- Plusieurs types :
 - Actifs contre virus enveloppés uniquement : EtOH, ammoniums quaternaires (biseptine..), H_2O_2 , Chlorhexidine
 - Actifs contre tous les virus : composés chlorés (eau de javel) et iodés (bétadine)

Les antiviraux sont uniquement virostatiques

- Antiviraux = molécules qui inhibent la réplication virale
- Pas d'effet virucide
- Pas d'action sur les virus en phase de latence

Les antiviraux peuvent inhiber différentes étapes de la réplication

Peu d'antiviraux sont disponibles



- Antiviraux contre :
 - VIH
 - Virus des hépatites B et C
 - Herpesviridae (HSV, VZV, CMV, HHV6)
 - Virus de la grippe, SARS-CoV-2
- Très rares antiviraux à « large spectre » pas/peu utilisés (ATU)
 - Ribavirine (actif contre virus ARN et ADN)
 - Cidofovir (actif contre nombreux virus ADN)

Des mutations de résistance peuvent apparaitre

 Variabilité génétique des virus => émergence de virus résistants

Recherche de résistance par tests phénotypiques et/ou génotypiques (séquençage)

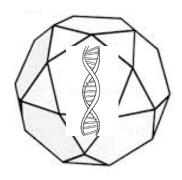
Anticorps monoclonaux : séroprotection passive

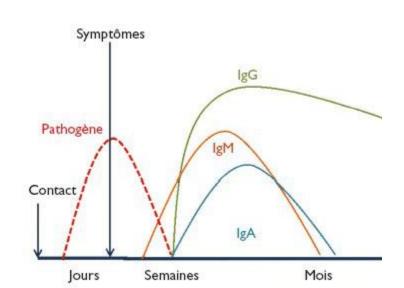
- Anticorps monoclonaux contre :
 - VRS
 - -SARS-CoV-2

• Utilisés en prophylactique (ou en curatif : SARS-CoV-2, essais cliniques pour d'autres virus)

Les méthodes de diagnostic en virologie

Outils du diagnostic en virologie




Diagnostic Direct :

- recherche des constituants du virus (infection en cours):
 - génome viral
 - antigènes viraux
 - le virus lui-même

• Diagnostic Indirect:

 recherche des anticorps développés suite à une infection virale

Indications du diagnostic direct et indirect

La plupart des infections virales ont une clinique évocatrice et ne nécessite pas de diagnostic biologique

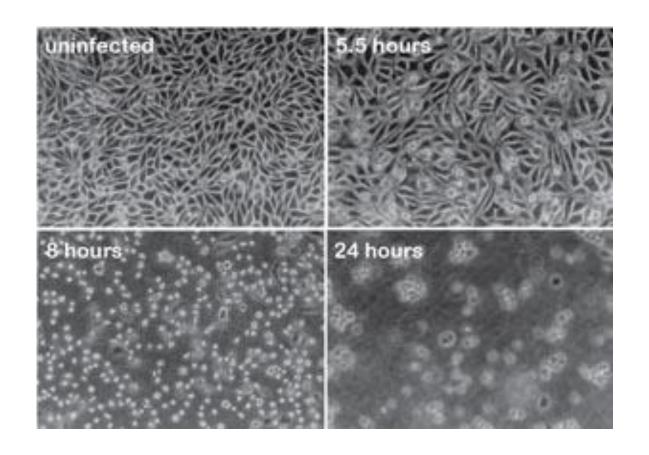
- Diagnostic direct :
 - Détecter et suivre une infection en cours aigüe, chronique, ou une réactivation d'un virus latent
- Diagnostic indirect :
 - 1. Affirmer le diagnostic de primo-infection
 - = apparition des Anticorps entre deux prélèvements d'un patient
 - 2. Définir le statut immunitaire vis-à-vis d'un virus
 - = savoir si un patient a déjà rencontré **un virus précis** (détection d'Anticorps positive) ou non (détection négative)

I. Techniques de diagnostic direct

- Recherche du virus ou de ses constituants :
 - 1. Détection du virus entier
 - 2. Détection d'antigènes (protéine)
 - 3. Détection de **génome** (ADN ou ARN)

1. Diagnostic direct : culture de virus

- = Isolement et identification des virus sur cultures de cellules
- Technique de référence mais très spécialisée
- Lignées cellulaires adaptées au virus recherché


 Hotte à flux laminaire car manipulations en environnement stérile et protégé

Effet cytopathogène (ECP)

Visualisation au microscope optique

2. Diagnostic direct par détection d'antigènes viraux

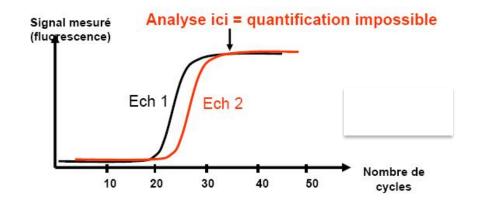
- Différentes techniques
 - Immuno chromato avec les tests de détection rapide (problème de sensibilité => utilisable si prélèvement riche en virus)
 - Tests ELISA (plus sensibles que TDR mais plus longs)
 - Immunofluorescence

- Applications
 - Grippe, VRS, AdV,Rotavirus, SARS-CoV-2

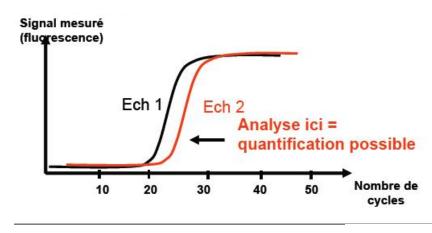
VIH (Ag p24) et
 hépatite B (HBe, HBs)

Typage de virus après isolement en culture cellulaire

3. Diagnostic direct par détection du génome viral

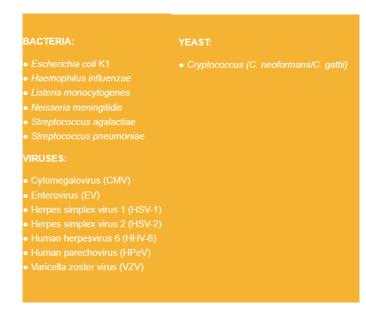

- Basée sur les techniques de biologie moléculaire
 - (RT)-PCR en point final ou en temps réel
 - Séquençage
- Technique sensible et spécifique
- +/- coûteux

PCR point final vs. PCR temps réel


PCR Point final

- Analyse en point final par migration sur gel
- Qualitatif
- Résultat en 3h

PCR temps réel


- Lecture de la fluorescence dans l'appareil à chaque cycle
- Quantitatif => suivi des personnes infectées
- Résultat en 1h

PCR multiplex pour approche syndromique

- PCR qualitative multiplex pour la recherche des génomes de plusieurs agents infectieux dans une même réaction PCR
- Utilisé en routine pour l'analyse des syndromes méningés

Applications du diagnostic direct par (RT)-PCR



- Dépister et suivre une infection en cours par :
 - Hépatites B, C, E
 - HIV
 - Herpesviridae, adénovirus, parvovirus
 - Virus respiratoires (SARS-CoV-2, virus influenza, VRS)
 - Arbovirus
 - HPV
 - ...

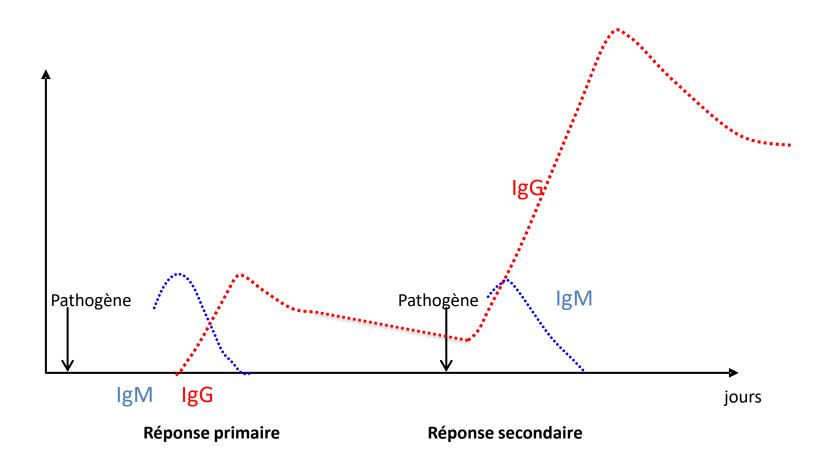
Séquençage

- Détection de l'ensemble des pathogènes d'un prélèvement par métagénomique/ métatranscriptomique
 - Diagnostic de recours
- Recherche de résistances

by Viktor S. Poór

Limites des différentes techniques de diagnostic direct

- Par détection d'antigènes viraux : peu sensible
- Par détection du génome viral : attention aux contaminations
- Par culture : long, nécessite de cultiver des cellules permissives au virus
- Ne permet pas diagnostic rétrospectif d'une infection aigüe


II. Techniques de diagnostic indirect

- Recherche du <u>anticorps</u> signant une réponse de l'hôte a l'infection virale :
 - Détection d'IgM (réponse précoce)
 - Détection d'IgG (réponse tardive)
 - Détection d'IgA (réponse locale)
 - Tests d'avidité des IgM (différencier primoinfection de la réactivation des anticorps)
- Plateformes d'immunoanalyse automatisées
- Prélèvement :
 - Sérum dans la majorité des cas
 - Autres prélèvements possibles (ex : salive pour rougeole)

Cinétique d'apparition des anticorps suite à l'infection

Avantages et inconvénients du diagnostic indirect

Avantages :

- Rapide, peu coûteux
- Automatisé

Inconvénients :

- faux positifs (administration d'Ig, transfusions, pathologies auto-immunes, grossesse, réaction croisée ...) et faux négatifs possibles (hémodilution, immunodéprimés, hémodialyse, prélèvement trop précoce par rapport à contamination)
- Délai nécessaire à la production d'anticorps : sans intérêt pour le diagnostic des infections respiratoires aigües (IRA), gastro-entérites aigües (GEA)...

Applications du diagnostic indirect

- Déterminer le statut sérologique
 - Avant vaccination
 - Avant traitement par immunosuppresseurs
 - Lors de la prise en charge de patient HIV
 - Dépistage systématique (AES)
 - Assurer la sécurité virale pour dons d'organes, tissus, cellules
- Dépister une infection en cours:
 - Hépatite aigue clinique
 - Femme enceinte (rubéole, CMV, Parvovirus)
- Suivre les infections chroniques
 - HBV

Adapter le diagnostic à la situation clinique

- Avantages et inconvénients de chaque technique
- Pathologie
- Terrain du patient (immunodéprimé...)
- Délai depuis le début des symptômes

Qualité de l'échantillon biologique

- 1. Prélevé au bon moment et au bon site de prélèvement
 - Selon physiopathologie du virus
 - Prélever sites d'entrée du virus, tissus cibles, sang, lésions éventuelles, voie d'élimination
 - Le plus tôt possible après le début des signes cliniques pour le diagnostic direct
- 2. Conservé et acheminé dans les bonnes conditions
 - 4°C et milieu de transport pour les écouvillons
- 3. Incluant des renseignements cliniques

Cas cliniques

 Mme Z, 24 ans, vient pour un dépistage de la rubéole. Pas de notion de vaccination. Elle prévoit une grossesse dans quelques mois.

- Quelle analyse faire?
 - A) Du diagnostic direct
 - B) Du diagnostic indirect
 - C) Une RT-PCR
 - D) Une sérologie rubéole

Cas clinique (R1)

- La sérologie donne le résultat suivant :
 - IgM négatifs
 - IgG positif
- Quelle interprétation et que lui proposer?
 - A) Infection récente
 - B) Infection ancienne
 - C) Vaccination nécessaire
 - D) Contrôle de la sérologie dans 2-3 semaines et reporter projet de grossesse

Cas clinique (R2)

- La sérologie donne le résultat suivant :
 - IgM positif
 - IgG positif
- Quelle interprétation et que lui proposer?
 - A) Infection récente
 - B) Infection ancienne
 - C) Vaccination nécessaire
 - D) Contrôle de la sérologie dans 2-3 semaines et reporter projet de grossesse

Cas clinique (R3)

- La sérologie donne le résultat suivant :
 - IgM négatif
 - IgG négatif
- Quelle interprétation et que lui proposer?
 - A) Infection récente
 - B) Infection ancienne
 - C) Vaccination nécessaire
 - D) Contrôle de la sérologie dans 2-3 semaines et reporter projet de grossesse

 Mr M, 74 ans, consulte aux urgences (en sept 2020) pour une toux fébrile avec tachypnée et confusions. Les symptômes sont apparus la veille.

- Quelle(s) analyse(s) microbiologique(s) faire?
 - A) Aucune devant cette bronchite isolée
 - B) ECBC (Examen cytobactériologique des crachats)
 - C) Une sérologie COVID
 - D) Une RT-PCR SARS-CoV-2 sur un prélèvement nasopharyngé et/ou sur un crachat

• Le petit B, 2 ans, vient consulter pour fièvre et éruption vésiculeuse typique de varicelle.

- Quelle(s) analyse(s) microbiologique(s) faire?
 - A) Aucune
 - B) Une PCR VZV sanguine
 - C) Une PCR VZV sur un écouvillon cutané de la lésion
 - D) Une sérologie VZV

 La mère du petit B est enceinte (37SA). Elle ne se rappelle pas avoir eu la varicelle enfant.

- Quelle(s) analyse(s) faire chez cette patiente afin d'évaluer le risque de varicelle néonatale?
 - A) Aucune
 - B) Une PCR VZV sanguine
 - C) Une PCR VZV sur un écouvillon cutané de la lésion
 - D) Une sérologie VZV

A RETENIR

- Virus : parasite intracellulaire obligatoire avec un structure nucléoprotéique
- Variabilité importante du monde viral
- Les virus peuvent donner différents types d'infection soit aigue, soit chronique, soit latente avec récurrence.
- Les antiviraux sont virostatiques : ciblent 1 étape du cycle de réplication virale
- Nombreux virus présents sur et dans le corps humain (virome)
- Les outils du diagnostic ont tous leurs intérêts et limites
- Des diagnostic virologiques urgents et rapides sont possibles

Des questions?

laurence.josset@chu-lyon.fr

MOTS EN ANGLAIS

- Viral load
- Acute infection
- Chronic infection
- Latent infection
- Viral diagnosis
- Antibody detection
- Viral antigen detection
- RNA, DNA, single or double strand
- Reverse transcription (RT)

REFERENCES

Liste des références de l'enseignement du jour :

Traité de Virologie Médicale, 2^e édition

Revir 2^e édition

http://viralzone.expasy.org

http://www.microbes-edu.org