


Les notions de base Le cycle de développement du médicament

Les notions de base Les acteurs

PROMOTEUR

- A l'origine de l'essai
- Le payeur
- Industrie Pharma, médecin hospitalier

INVESTIGATEUR

- Surveillant de l'essai
- Médecin et son équipe (Centre investigateur)

SUJETS

- Remplit les critères d'éligibilité
- Donne son consentement
- Est au cœur de l'essai

AUTORITÉS RÈGLEMENTAIRES

- ANSM
- CNIL
- CNOM (Ordre des Médecins)
- donnent une autorisation

COMITÉ DE PROTECTION DES PERSONNES

- Donne un avis
- Constitué de comités scientifiques et sociétaux

Les rôles possibles du Pharmacien

Chef de projet

Attaché de Recherche Clinique

Pharmacien hospitalier

Pharmacovigilance

Assurance Qualité

Affaires réglementaires

Les notions de base Les différents types d'essais cliniques

- A visée thérapeutique: nouveaux traitements ou médicaments, nouvelles combinaisons, nouvelles méthodes de chirurgie ou radiothérapie
- A visée diagnostique : méthode pour diagnostiquer une maladie ou un état pathologique afin d'améliorer le diagnostic (exemple efficacité de la troponine (protéine musculaire) pour le diagnostic de l'infarctus vs coronographie)
- A visée prophylactique: prévenir l'apparition ou la récidive (exemple Hypertension Artérielle qui mène à l'infarctus ou bien à la récidive d'infarctus)
- Sur le dépistage : prévention, rassurer ou signifier un risque (exemple on parle maintenant d'une prise de sang avec test ADN pour dépister la trisomie)
- Qualité de vie : améliorer la qualité de vie et le confort des maladies chroniques (exemple d'un essai sur la dimension "image de soi" pour administration de soins de beauté à des femmes recevant une chimio après chirurgie d'un cancer du sein"

Les notions de base Les différentes techniques d'échantillonnage

3 classes d'essais pour s'assurer la qualité de la mesure des résultats

- Essai randomisé :
 - 2 groupes : 1 traitement standard et 1 nouveau traitement
 - Les patients de chaque groupe sont choisis au hasard mais savent ce qu'ils reçoivent
- Essai à l'aveugle (ou à l'insu) :
 - Les patients ne savent pas ce qu'ils reçoivent
 - Surtout utilisé si placebo afin d'éviter l'effet physiologique positif
- Essai en double aveugle :
 - Ni le patient, ni les soignants ne savent ce qui est délivré
 - Tout est numéroté. Seul le médecin responsable sait pour rédiger les ordonnances
 - Evite les biais liés à la motivation du sujet et/ou à celle du personnel

€

Organisation d'un essai clinique Un process en 4 grandes étapes

Préparation

Autorisations

Inclusion et suivi

Analyses et Publications

- Question scientifique posée
- Justification de la recherche avec estimation des bénéfices potentiels
- Rédaction du protocole
- Sélection des centres
- Rédaction des documents (note d'information, consentement...)

- Autorisation ANSM
- Avis du Comité de Protection des Personnes
- Gestion des contrats avec les hôpitaux
- CNIL et CNOM

Organisation d'un essai clinique Un process en 4 grandes étapes

Préparation

Autorisations

Inclusion et suivi

Analyses et Publications

Phase I

• Toxicité du produit

• 1ère étape sur le sujet humain

- 15 à 50 personnes
- Profil : volontaires sains ou patients en impasse de traitement
- Durée : de 1 à 2 ans
- Sur 100 produits en phase I, seuls 70 passeront en phase II

Phase II

• Efficacité du produit

- 25 à 100 personnes
- Profil : patients uniquement
- Durée : de 2 à 3 ans
- Sur 70 produits issus de la phase I, seuls 33 passeront l'étape de la phase II

Phase III

• Bénéfice/Risque

- Plusieurs centaines voire milliers de personnes
- Profil : patients uniquement
- Durée : de 2 à 4 ans
- Sur 33 produits issus de la phase II, seuls 20 passeront l'étape de l'AMM

Phase IV

AMM

PostCommercialisation

- Plusieurs milliers voire centaine de milliers de personnes
- Conditions réelles d'utilisation
- Mise en exergue d'effets indésirables plus rares
- Etudes observationnelles ou interventionnelles

Organisation d'un essai clinique Un process en 4 grandes étapes

Préparation

Autorisations

Inclusion et suivi

Analyses et Publications

- Regroupement et traitement des données
- Rédaction du rapport d'étude qui répond à la question initiale
- Publication des résultats dans une revue scientifique

Vraiment pour ou totalement contre ? Participer ou non à un essai

- Pourquoi se pose-t-on la question?
- Les arguments et limites de chaque positionnement

Vraiment pour ou totalement contre ? Pourquoi se pose-t-on la question?

De nombreux abus

- Dans notre histoire :
 - Fin XVIIIème siècle: expérimentation sur la variole
 - Seconde guerre mondiale : expérimentations Nazies
- Mais aussi notre actualité pas si lointaine :
 - Jusqu'en 1989 : essai clinique sur le gaz moutarde en Angleterre

Des scandales récents

 2016 : Rennes avec la mort et l'hospitalisation de volontaires sains suite à un souci dans la posologie d'administration de la substance testée

Mais cela peut-il faire oublier les progrès accomplis grâce aux essais cliniques ?

Vraiment pour ou totalement contre ? **Expérience**

Et si nous nous placions comme sujet potentiel d'un essai clinique ?

- En tant que Sujet/Patient je peux obtenir
 - Un nouveau traitement en "avant-première"
 - Des soins médicaux renforcés
 - Une meilleure qualité de prise en charge
- Tout en ayant la possibilité d'arrêter à tout moment
- Et la satisfaction de participer au développement d'une innovation

En tant que Sujet/Patient je prend le risque

- De recevoir un traitement non efficace, alors qu'un autre médicament existe le cas échéant
- De ne pas choisir mon traitement (essai randomisé)
- De subir un protocole lourd que je ne comprends pas, plus contraignant qu'un traitement classique
- De n'en tirer aucun bénéfice
- De subir des effets indésirables potentiellement graves

Vraiment pour ou totalement contre ? Les limites de chaque positionnement

- Peut-on imaginer vivre sans la pénicilline ?
- Ou même sans vaccin ?
- Être « vraiment pour » signifie-t-il fermer les yeux sur les faiblesses du système ?

- Peut-on tout accepter sous couvert de progrès scientifique ?

Un équilibre à trouver Les insuffisances des acteurs

PROMOTEUR

INVESTIGATEUR

SUJETS

AUTORITÉS RÈGLEMENTAIRES

CPP

- Le promoteur est le plus souvent le payeur. Il y a donc une sorte de conflit d'intérêts lorsque le promoteur est une entreprise pharmaceutique
- Une panne dans l'innovation pousse les laboratoires à « recycler » en re-brevetant
- La recherche publique est sous-estimée alors qu'elle a un rôle important dans le lancement de médicaments à réelle valeur ajoutée

Un équilibre à trouver Les insuffisances des acteurs **AUTORITÉS** INVESTIGATEUR **PROMOTEUR S**UJETS **CPP RÈGLEMENTAIRES** Les centres investigateurs que ce soient les hôpitaux ou les médecins (généralistes ou spécialistes) considèrent souvent les essais cliniques comme une source de revenu complémentaire (Charges, conflit potentiel d'agendas)

Un équilibre à trouver Les insuffisances des acteurs

PROMOTEUR

INVESTIGATEUR

AUTORITÉS RÈGLEMENTAIRES

CPP

Les sujets vulnérables

- Les enfants (uniquement s'il n'est pas possible d'utiliser des adultes)
- Les personnes sous tutelle ou curatelle

Les essais réalisés dans les pays en développement

Un équilibre à trouver Les insuffisances des acteurs

PROMOTEUR

INVESTIGATEUR

SUJETS

AUTORITÉS RÈGLEMENTAIRES

- Ils se contentent de donner une autorisation/ un avis mais il n'y a pas de réel contrôle sur le processus
- Les longueurs des procédures sont un frein au démarrage d'une étude
- L'innovation l'emporte parfois sur le contrôle (fécondation in vitro)

Un équilibre à trouver Les faiblesses du process

AUTORISATIONS

INCLUSION ET

ANALYSES ET
PUBLICATIONS

Le consentement éclairé et la notice d'information

- Signature obligatoire du patient ou de son représentant léga
- Problèmes posés : compréhension des tenants et aboutissants, signature des tuteurs ou parents : quelles limites ?

Le protocole:

Il est pensé et manipulé par le promoteur qui lui fait dire ce qu'il veut sans réel contrôle en aval

Un équilibre à trouver Les faiblesses du process

PRÉPARATION

Autorisations

Inclusion et suivi

Publications

Le Placebo

- Que dit la loi ?
- Quelles sont les limites ? Abus sur l'utilisation des placebos
- Quid de l'effet placebo ? 30% de l'efficacité thérapeutique et il est le parfois seul moyen de prouver l'efficacité d'un nouveau traitement

Un équilibre à trouver Les faiblesses du process

PRÉPARATION

AUTORISATIONS

INCLUSION ET SUIVI

Analyses et Publications

La communication post-essai et la promotion des médicaments

- L'appartenance des données n'est pas clairement définie
- L'obligation de diffusion des résultats des essais non respectée par les labos hormis les résultats positifs
- L'intimidation des chercheurs indépendants
- La promotion massive fondée sur des résultats pas toujours clairs

Un équilibre à trouver Les alternatives possibles

Recours systématique à un tiers substitut au promoteur pour plus d'impartialité

Le rôle de la CRO (Contract Research Organisation)

Réduire les intérêts économiques

- Promouvoir les études « open source », sans but lucratif
- Améliorer la transparence en encadrant mieux les publications de résultats

Limiter les essais sur le sujet humain

- Mise en place de modèle prédictif limitant le nombre de sujet d'essais cliniques : simulation par ordinateur des résultats des phases II grâce aux résultats de phase I
- Séquençage avec un double-virtuel : très prometteur pour se passer des sujets humains grâce à la simulation informatique
- Impression 3D de tissu humain permettant de réaliser des recherches avancées

