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Pourquoi le dimensionnement des structures ?

(a) Peugeot 408 (b) TGV M

© Peugeot © SNCF - Alstom Avelia Horizon

(c) Eolienne (d) Cuve
© Radio France - Stéfane Pocher © Labbe Process Equipment
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Qu'est que le dimensionnement des structures ?

Dimensionnement des structures

Il s'agit d'une discipline scientifique qui permet de
déterminer ou de vérifier les propriétés d'un produit
afin de prévenir sa rupture lors de son utilisation.

Dimensionner une structure signifie :

e Calculer les dimensions adéquates.

e Choisir les matériaux les plus adaptés.

pour que la structure étudiée supporte les actions
mécaniques extérieures appliquées.

Cette discipline est en lien étroit avec les autres
modules : mécanique, science des matériaux, concep-
tion,...

Il est intéressant de noter que, contrairement a la mé-
canique qui considére des solides indéformables, en
DDS, on s'intéresse a des solides déformables.
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jectifs du module

Déterminer les actions mécaniques intérieures d'une structure.

Identifier la nature de la sollicitation (traction/compression,
cisaillement, etc.).

Dimensionner un probleme avec la théorie des poutres.

Identifier le point critique (de vulnérabilité) d'une structure en
vue de son dimensionnement.

Vérifier et valider les résultats avec une étude numérique.
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Organisation du module

Répartition horaire :

e 4 séances (8h) de cours magistraux (CM)
e 9 séances (18h) de travaux dirigés (TD)
e 1 séance (4h) de travaux pratiques (TP)

Evaluations :

e 2 devoirs surveillés (DS) de 1h30 (2h pour les 1/3 temps) sur
les travaux dirigés

e 1 note de travaux pratiques
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Chapitre 1

Introduction et bases du dimensionnement des

structures
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PLAN
Chapitre 1

© Djibrilla NOMA (UCB Lyon 1)

Objectif :

Présenter la théorie des poutres et ses grandes hypo-
théses

Contenu :

Classification des corps

Théorie des poutres

Hypotheses en DDS

Principe de superposition
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Classification des corps

Les corps peuvent étre classés en trois familles :
o ) Note importante :

e Corps uni-dimensionnel (1-D) : les poutres (dont la
longueur transversale L est beaucoup plus grande Dans ce module, nous nous concen-
que les autres dimensions du corps). trerons sur les corps de type poutre.

e Corps bi-dimensionnel (2-D) : les plaques (I'épais-
seur e de la plaque est au moins 10 fois inférieure
aux autres dimensions).

Théorie des poutres

e Corps tri-dimensionnel (3-D) : les solides.

Poutre Plaque Solide
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Exercices d'application

Indiquer la nature des solides ci-dessous :

" R o i i Barres de treillis
Hélicoptere Clé a pipe débouchée

p

Airbus 380
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Théorie des poutres

Définitio

Une poutre est une piéce caracté-

risée par une ligne, appelée fibre Une poutre est caractérisée par :

moyenne ou neutre, présentant une e Une longueur L de la fibre moyenne trés
courbure faible devant sa longueur, supérieure aux dimensions transversales
ainsi qu’une section perpendiculaire (rapport > 5).
a cette fibre, appelée section droite, e Un rayon de courbure de la fibre
dont la variation est lente le long de moyenne grand devant les dimensions
la poutre. transversales (rapport > 5)).

L J e Un profil sans discontinuité.

Conventions de repérage :
e L’axe (O, X) suit la fibre moyenne de la

Section droite
ﬁL poutre.
®) . N .
- e Le plan (¥,Z) correspond a la section

Fibre moyenne \/\ .
QY 6, droite.

/

Centre d'inertie (premiére
approche = centre de gravité)
de la section (S)

Poutre
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Caractéristiques des poutres

Trois types de poutres :

e une poutre gauche : poutre dont la fibre
moyenne est une courbe gauche (3-D : trois
dimensions dans |'espace).

e une poutre plane : poutre dont la fibre
moyenne est une courbe plane (2-D : conte-
nue dans un plan).

e une poutre droite : poutre dont la fibre
moyenne est un segment de droite (1-D).

Section droite

Fibre moyenne

Centre d'inertie (premiére
approche = centre de gravité)
de la section (S)

Poutre

La section (S) de la poutre peut étre

soit :

e constante : la section droite (S) ne
varie pas le long de la fibre moyenne.

e variable : la section droite (S) n'est

pas identique le long de la fibre
moyenne.

S:/dS (1)
S
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Exemples de types de poutres

Poutre droite (1D) :

Poutre en acier de type IPN utilisée pour soutenir un plancher dans une
structure de batiment industriel.

Fibre moyenne = segment de droite.

Poutre plane (2D) :

Arche en béton armé d'un pont en arc (forme parabolique ou
semi-circulaire).

Fibre moyenne = courbe contenue dans un plan.

Poutre gauche (3D) :
Rail hélicoidal d'un toboggan ou spirale architecturale.
Fibre moyenne = courbe spatiale non plane.
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sont les poutres?

Pont en arc — poutre plane

e Ou repére-t-on des poutres
droites ?

e Des poutres planes?

e Des poutres gauches?

Hélice — poutre gauche
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Hypotheses utilisées en DDS

Hypothéses géométriques dans ce module

e Solide « allongé » : une dimension largement dominante (type poutre)
(rapport > 5).

Fibre moyenne droite (1-D) : poutre droite.

Section droite constante ou a variation lente.

Section perpendiculaire a la fibre moyenne.

e Poutre avec un plan de symétrie longitudinal.
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Hypotheses utilisées en DDS

4.r Les caractéristiques in-
Matériaux > -
trinséques du matériau,

telles que I'homogénéité
et l'isotropie, sont éva-

e Un matériau est dit « homogeéne » s'il pos-

sede, en tout point, la méme composition luées au niveau de sa mi-
et la méme structure. Ainsi, le matériau crostructure, c'est-3-dire
posséde les mémes propriétés mécaniques a des échelles trés pe-
et thermiques en son sein. tites.

e Un matériau est dit « isotrope » si ses (cf. cours de SDM)

propriétés mécaniques et thermiques sont
identiques dans toutes les directions.

e Un matériau est qualifié d'« élastique li-
néaire » s'il retrouve sa forme initiale apres
avoir subi un cycle de charge et décharge.
Cette propriété implique que le matériau se
déforme peu, voire pas du tout.

Elastique
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Hypothéses utilisées en

Matériau homogene :
Exemple : acier inoxydable

hétérogene

Isotropie et homogénéité

(© R. Atmani)

Anisotropic Isotropic

homogeéne

Heterogeneous

[

Matériau isotrope :
Exemple : verre trempé

v \ .
% /H | M\ i
ik
Isotropie et homogénéité -
(© H.B. Lynn)
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Hypotheses utilisées en DDS

elques hypothese amentales

e Hypothése de Navier-Bernoulli : Les sections
droites et planes demeurent droites et planes
aprés déformation.

e Principe de Saint-Venant : Les résultats obte-
nus lors du dimensionnement des structures ne
sont valables qu'a une distance suffisante de la
zone d'application des efforts concentrés, ap-
pelée zone de singularité.

e Hypothéses des petites déformations (HPP) :
Le solide subit de pEtitS déplacements (de lllustration du principe de Saint-Venant
I'ordre de 1/100 de la longueur de la fibre © COMSOL
moyenne) ainsi que de petites déformations.

Cliquez ICI pour un résumé des hypothéses de la DDS (© TSI Algs).
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https://www.youtube.com/watch?v=Eqrp1ODGmks

Principe de superpositions

Petites déformations : déplacements et changements de forme suffisamment
faibles (typiquement < 1% de la dimension caractéristique) pour que la relation
entre contraintes et déformations soit linéaire.

Elastiques : le matériau retrouve sa forme initiale aprés suppression des charges,
sans déformation permanente.

Sous ces conditions, les hypothéses linéaires s'appliquent, ce qui permet notam-
ment |'usage du principe de superposition. Ce principe stipule qu'un systéme
de forces extérieures est équivalent a la somme des forces individuelles agissant
séparément.

P —

Fyq
|

= +| + | |
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Chapitre 2

Torseur de cohésion et sollicitations simples
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PLAN
Chapitre 2

© Djibrilla NOMA (UCB Lyon 1)

Objectifs :

e Appliquer la théorie des poutres.

e Déterminer les efforts mécaniques internes.

Pré-requis (cf. cours de mécanique S1) :
e Modélisation des actions mécaniques extérieures

e Principe fondamental de la statique (PFS)

Contenu :
e Efforts internes

e Définition du torseur de cohésion/section

e Sollicitations simples

Dimensionnement des structures (DDS) - S
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Rappel : actions mécaniques extérieures

Les actions mécaniques extérieures sont
des conditions aux limites appliquées au
systeme. Elles provoquent un mouvement
ou une déformation de la structure étudiée.
Elles peuvent étre de deux types :

e Charges concentrées/localisées : Les !
charges extérieures sont concentrées en un S s -
point le long de la poutre. Elles sont repré-
sentées par un torseur des actions méca- 7
niques appliquées a une section droite au
niveau du point d'application. o)

el

e Charges réparties : Les charges exté-
rieures sont réparties sur une portion ou
|'ensemble de la poutre. Elles sont repré-
sentées par une fonction de répartition le
long de la zone concernée.

Dijibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S2



Rappel : actions mécaniques extérieures

Le torseur des actions mécaniques extérieures appliquées en un point B (charge

localisée), dans I'espace, s'écrit :

7‘5 Xg Lg
{r8lpr = { — } =qYs Ms 2
M B R ZB NB B.R

—

dans le repére R = (0, X, ¥, Z)
Dans le cas d'une modélisation 2D dans le plan (X, ¥), ce torseur se réduit a

X —
{TB}B,R = {YB - } (3)
- Ne B,R

-
@)
>
o]
=]

24 /125
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Rappel : actions mécaniques extérieures

Torseur des actions mécaniques

7‘5 XB LB
{TB}B’R = { H } = {YB I\/IB} (4)
B R ZB NB B.R
o

Nous souhaitons exprimer ce torseur en un autre point A :
—
e La résultante R reste inchangée quel que soit le point.
e En revanche, le moment doit étre transporté du point B vers A selon la formule de

Varignon :
— — — =
Ma=Mp+AB AR (5)
v Y Fy
s !
A B c -

25 /125
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Rappel : Principe fondamental de la statique (PFS)

Principe fondamental de la statique (PFS)

Un systéme est en équilibre statique lorsqu’il est immobile (pas en mouvement).
Dans ce cas, le principe fondamental de la statique (PFS) stipule que la somme
des forces extérieures et la somme des moments extérieurs au point O sont nulles.

I_R":G Fext—O
To= . = . B (6)
Mo:6 Mo =0
7] -
! Iy
! T
0 AT . B . T C
Fy Fe

26 /125
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Rappel : Quelques liaisons mécaniques courantes

[ [ Encastrement [ Ponctuelle d’axe y [ Pivot d'axe Z ]

Zq a

Exemple ————
X L 0 0 X L
Torseur des AM Y M Y O Y M
Z N, 0 0, Z 0],
0 0 Us R« 0 0
Torseur cinématique 0 0 0 Ry 0 0
0 0), Uz R ), 0 R ),

e Le torseur des actions mécaniques (AM) représente les efforts (forces et moments)
transmissibles par la liaison au point de contact avec le systéme.

e Le torseur cinématique décrit les degrés de liberté de la liaison : les composantes de

translation et de rotation autorisées.

27 /125
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Torseur de cohésion — torseur de section

e Actions mécaniques intérieures : Les efforts inté-
rieurs d'une poutre sont des forces agissant a I'in-
térieur du matériau, garantissant |'équilibre ou la
cohésion de la structure sous |'effet des charges ex-
térieures appliquées. .

e Pour déterminer les efforts internes d'une poutre, il
est nécessaire de réaliser une coupure fictive sur la
poutre (E) a I'aide d'un plan (7) perpendiculaire
a la ligne (fibre) moyenne de la section (S). La
poutre est ainsi divisée en deux parties, (Ej) et
(E2), appelées « trongons », au niveau du point
G, centre de surface de (S).

Le torseur de cohésion
représente |'action méca-
nique exercée par une por-
tion de la poutre sur une
autre, de part et d'autre
d'une coupure fictive.
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Torseur de cohésion — Torseur de section

Définition du torseur de cohésion

Les actions mécaniques exercées par le troncon (Ez) sur le troncon (E1) a travers
la section droite fictive (7) d’un solide (S) correspondent aux efforts internes a la
poutre. Elles sont modélisées par le torseur de cohésion (ou torseur de section)
{Tcoh}G,R, dont les éléments sont rapportés au point G, centre de la surface de
(). Ce torseur est aussi noté {Tint}¢ %

e Repére fixe : Ro(0, X, ¥, Z), utilisé pour I'étude de I'équilibre statique de (S).
e Repére lié a la poutre : Ra(A, X, ¥, Z), avec (A, X) représentant I'axe tangent a la
ligne moyenne (ou fibre moyenne).

e Dans le cas traité ici, on a Ra = Ro.

29 /125
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Torseur de cohésion — Torseur de section

Torseur de section sur le troncon de gauche (E;),
appelé « amont »

e Bilan des actions mécaniques extérieures
(BAME) :
— Actions mécaniques extérieures agissant sur z

(El) : {TextHEl}G’R
— Actions mécaniques intérieures exercées par le

troncon (E2) sur (£1) : {7Te~5}6r Par convention :
e Principe fondamental de la statique (PFS) : {Tinttcr = {TBnB}e R

{Text—>E1}G7R + {TEZAEI}G,R = 6

Ainsi, le torseur de cohésion représentant les actions internes de (E;) sur
(E1) est donné par :

R
{Tcoh}G R = {Tint}G R =" {Text—>E1}GR == { L—ﬁ) } (7)
: : ’ Moot Jon
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Torseur de cohésion — Torseur de section

Torseur de section sur le troncon de droite (E),
appelé « aval »

e Bilan des actions mécaniques extérieures
(BAME) :
— Actions mécaniques extérieures agissant sur
(E2) : {TextaEg}G’R
— Actions mécaniques intérieures exercées par le
troncon (E1) sur (E2) : {76,565} =

e Principe fondamental de la statique (PFS) :

»

Par convention :
{Tint}G,R = {TElﬂEz}G,R

{Text—>E2}G7R + {TElqEZ}G,R = 6

Ainsi, le torseur de cohésion représentant les actions internes du troncon
(E1) sur (E2) est donné par :

R
{Tcoh}GR = {Tint}G R = {TeXt*)EQ}GR = { ﬂ }
: : ’ Moot Jor

(8)
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Torseur de cohésion — Torseur de section

Conventio torseur de cohési

Le torseur de cohésion modélise I'action mécanique exercée par une portion (Ez)
de la poutre sur une autre portion (E1), de part et d’autre d’une section fictive
(). Il représente les actions internes de la poutre. Ce torseur est exprimé au
point G, centre de la section, dans le repére local R lié a la poutre.

{Tcoh}G’R = {Tint}G’R = = {Text%El}G,R = {TeXt%EZ}G,’R, (9)

Lors de I'analyse des actions internes dans une poutre, il est nécessaire d'effectuer une coupe

fictive chaque fois qu’une des situations suivantes se présente :

e discontinuité des efforts due a la présence d'actions mécaniques concentrées (efforts
ponctuels, moments, liaisons mécaniques comme pivots, rotules, appuis, etc.);

e discontinuité géométrique, notamment en cas de changement de direction de la ligne
moyenne.

Attention : I'amont n’est pas forcément a gauche, ni I'aval a droite. Cette convention
dépend uniquement du repére local (X) de la poutre. Toujours bien poser le sens d'analyse
avant d’appliquer les conventions de signe!
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Sollicitations simples : Résultante

Effort normal N

L'effort interne agissant perpendiculairement
a une section droite de la poutre entraine soit
un allongement (traction), soit un raccourcis-
sement (compression) de celle-ci.

Ny 0
{Teontgr=190 0 (10)
0 0J .,

v o

Pour :
e Ny > 0: Traction

e Ny < 0: Compression

33/125
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Sollicitations simples : Résultante

Efforts tranchants T, et T,
Les efforts internes agissant dans le plan d'une

section droite de la poutre provoquent un ci-
saillement relatif entre deux sections.
0 0
{7'60'7}(;,,1? =q7, 0 (11)
T, 0 G.R

» e

34 /125
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Sollicitations simples : Moment

Mo t de torsion My,

Un moment de torsion correspond a la somme
des moments de tous les efforts internes dans
la section, calculés par rapport a I'axe normal
de la fibre moyenne X.

»

0 Mtx
{Tentgr=140 0 (12)
0 0 J.;

35/125
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Sollicitations simples : Moment

Moments fléchissants Mg, et Mg,

Un moment fléchissant est une composante
du moment résultant des actions mécaniques
qui engendrent la flexion longitudinale de la
poutre, contribuant ainsi a sa réduction.

v e

0 O
{Tcoh}G,R =<0 Mfy (13)
0 Mfz

G.R

36 /125
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Torseur de cohésion (ou torseur de section)

Le torseur de cohésion est donc donné par :

N Mtx
{Tcoh}G,R =491, Mg (14)
Tz Mfz

G.R

Avec :
e N, : Effort normal selon I'axe (G, X)

e T, : Effort tranchant selon I'axe (G, y)
e T, : Effort tranchant selon I'axe (G, Z)
e M, : Moment de torsion selon I'axe (G, X)
e My, : Moment fléchissant selon I'axe (G, ¥)

e M, : Moment fléchissant selon I'axe (G, Z)
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Torseur de cohésion — torseur de section

Exercice 1 — Détermination de l'effort normal N

Objectif : déterminer le torseur de cohésion associé a une sollicitation en traction.
e Déterminer le torseur de cohésion sur le troncon gauche (partie amont).

e Déterminer le torseur de cohésion sur le troncon droit (partie aval).

yA
P F
- -
xX
A B

Données géométriques :
e AB = LX : longueur de la poutre.

e AG=x%:Gestle point de section fictive sur la fibre moyenne.
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Torseur de cohésion — Exercice 1 : troncon amont (£;)

1) Equilibre des efforts (résultante)

Application du PFS a E; :
{Text—e, } + {Tint} = 0 = ﬁext%El + ﬁint =0

~F N 0 N=F
o |+(T|=(0] = T,=0
0 T, 0 T,=0

Interprétation : L'effort de traction F est totalement équilibré par la cohésion interne.
Aucun effort tranchant.

Résolution :
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Torseur de cohésion — Exercice 1 : troncon amont (£;)

2) Equilibre des moments au point G

./\;lext—>E1(G) + Mint = 6
Transport du moment de Aa G :

Mo, (G) = M(A)+ GAARewsr, =0
—

——
=0 —X —F

0 |al O |=0

0 0
Résolution :

Mtx = 0

Mg =0 = {My=0
Mg =0

Conclusion : Aucun moment interne ne se développe, la poutre est uniquement sollicitée
en traction axiale.
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Torseur de cohésion — Exercice 1 : troncon aval (E;)

1) Equilibre des efforts (résultante)

Application du PFS a E; :
{Text—>E2} + {TE1—>E2} =0 = {Text—>E2} — {Tint} =0

Résolution :

F N 0 N=F
Rext—»Eg — Rine =0 = 0 — Ty =[(0]| = Ty =0
0 T, 0 T.—0

Interprétation : L'effort de traction est équilibré de facon identique par la cohésion
interne. Aucune composante tranchante.
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Torseur de cohésion — Exercice 1 : troncon aval (E;)

2) Equilibre des moments au point G

Mext—)Ez(G) - Mint = 6 = Mint - MextﬁEz(G)

Calcul du moment transporté au point G :

. = = L—x F
Mext—»Ez(G) == GB N RextHEg == 0 A 0 - 0
0 0

Conclusion :
Mtx == 0
Mg =0 = Mg, = 0
Mg, =0

Aucun moment interne ne se développe sur le troncon aval.
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Torseur de cohésion — torseur de section

Exercice 1 — Syntheése

Pour le systeme soumis a une force axiale F, le torseur de cohésion
au point G dans le repere R est donné par :

F 0
{Tcoh}G’R =0 0
0 0

G,R

o L'effort normal N est positif, ce qui signifie que la poutre est sol-
licitée en traction.

e Le torseur obtenu est identique que I'on considere la partie amont
ou la partie aval.

43 /125
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Torseur de cohésion — Exercice 2 : effort normal N

Objectifs :
e Déterminer le torseur de cohésion sur I'échantillon de gauche (partie
amont).
e Déterminer le torseur de cohésion sur I'échantillon de droite (partie
aval).

Z/‘
P F
. I
x
A B

Données géométriques :
o AB=L%: longueur totale de la poutre.

o AG = xX : point G au niveau de la section de coupe fictive.
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Exercice 2 — Equilibre du troncon amont (E;)

1) Résultante des actions mécaniques

Application du PFS a E; :
{Text—>E1} + {Tint} =0

F N N=-F
72ex1:~>E1 +7€int :6:> <0> + <Ty> = 6:> y =

0 T,

Résolution :

Conclusion : L'échantillon gauche est en compression (N < 0).
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Exercice 2 — Moment au point G (troncon amont

Equilibre des moments en G :

Mext—£,(A) + GAA Rexts5,(A) + Mint = 0

—x F
G = 0 y Rext == 0 = GA A Rsxt == O
0 0

Calcul :

Mt, =0
= Mix=0 = <{Mf=0
Mf, =0

Conclusion : Aucun moment interne ne se développe sur E;.

© Dijibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S2

46 /125



Exercice 2 — Equilibre du troncon aval (5,)

PFS appliqué a E; :

Résultante des forces :

—-F N N=_—F
(o)-(Ty>:6:> T,=0
0 T. T.=0
L—x —F
G :( 0 ) ﬁext:<o>:GPA7€ext:6
0 0

:>Mint :6

Moment en G :

Conclusion : Méme torseur de cohésion qu'en amont.
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Synthése — Torseur de cohésion (Exercice 2)

—F
{Tcoh}QR = 0
0

o O O

G,R
e |'effort normal N = —F indique que la poutre est en compres-

sion.
e Aucun effort tranchant ni moment interne : effort normal pur.

o Le résultat est identique sur les deux trongons (amont et aval).

48 /125
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Torseur de cohésion — Exercice 3 : effort tranchant T,

Objectifs :
e Déterminer le torseur de cohésion sur les deux parties de la poutre.

v
T
By

i,
~

Données :
e AB = LX : longueur totale de la poutre.

o AG = xX : coupe fictive au point G.

e Action extérieure : force verticale F appliquée en B.
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Exercice 3 — Bilan des actions mécaniques extérieures

(BAME)

Principe fondamental de la statique (PFS global) :
Y FR=0 = Xa=0

Y FR=0 = Ya-F=0 =
S Ma=0 = Ms-F-L=0 =

Les efforts d’appui sont connus. On peut maintenant analyser les

Conclusion :
efforts intérieurs via une coupe fictive.
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Exercice 3 — Equilibre du troncon

1) Résultante des forces — PFS :

’lllﬂl

{Tsxt—>E1} + {Tint} = 6 = Rext+ ﬁint = 6

0 N N=0
(F>+<Ty>:6:> T,=—F
0 Tz T.=0

Conclusion : La poutre est soumise a un cisaillement vertical T, = —F.

51/125
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Exercice 3 — Moment au point G (trongon amont)

Equilibre des moments : - =
Mext(G) + Mint =0

0 —X
/\71A—<o>, G?\—(O), ]—(
FL 0
0 0 0
GAAﬁA:<0>:Mext(G):< 0 ):( 0 )
—xF FL — xF F(L—x)
0
Ml’nt—< 0 >
—F(L—x)

Conclusion : Moment fléchissant My =| —F(L — x)
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Exercice 3 — Equilibre du troncon aval (£;)

2) Résultante des forces — PFS :

0 N N=0
(F) - <Ty> =0=<{T,=—F
0 e T.=0

Méme effort tranchant que pour E;.
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Exercice 3 — Moment au point G (trongon aval)

Mext(B) + G_B A ﬁext(B) - Mint = 6

L—x 0 0
GE :( 0 ) ﬁext(B):<—F> ;»G“Bmiext=< 0 )
0 0 —(L—x)F
Mt 0
n= (8)=( 2.0
M£, —(L—Xx)F

Conclusion : Moment fléchissant My = —(L — x)F
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Synthése — Torseur de cohésion (Exercice 3)

Torseur de cohésion au point G :

0 0
_F(L —
Famem=«—1F 0 avec My = { (L=x)
’ 0 M —(L=x)F

G,R

e Effort tranchant constant T, = —F
e Moment fléchissant variable selon x

e Méme torseur quelle que soit la coupe

(amont)
(aval)
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Diagrammes des sollicitations

Diagrammes des sollicitations

Pour chaque sollicitation — effort normal N, efforts tranchants T,, T,
moment de torsion My, moments fléchissants Mg,, Mg, — il est possible de
tracer un diagramme montrant |'évolution de sa valeur le long de la poutre
(en fonction de la position x).

Ces valeurs sont tracées avec leur signe algébrique, selon les conventions
choisies, ce qui permet de visualiser les zones soumises a compression, trac-
tion, cisaillement ou flexion.

Les diagrammes de sollicitations traduisent donc graphiquement les com-
posantes du torseur de cohésion déterminé par les équilibres statiques, et
mettent en évidence les zones de sollicitation maximale.
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Diagrammes des sollicitations - exercices

Exercice 1 - diagramme de sollicitation

v Effort normal N
I : (Traction : N >0)

N

Exercice 2- diagramme de sollicitation

o Effort normal N
\‘ R (Compression : N < 0)

Exercice 3- diagrammes de sollicitation

r, My Effort tranchant T,
Moment fléchissant Mg,
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Synthése — Torseur de cohésion (ou torseur de section)

Définition Forme générale

Le torseur de cohésion modélise I'action

mécanique interne exercée par une portion Ny M
(E2) sur (Ep), séparées par une section fictive {Tcoh}G’R =< Ty Mg
(TI'). T, Mfy

Exprimé au point G, centre de la section,

dans le repére local R = (X, ¥, Z). N : effort normal

(traction/compression)
Ty, T, : efforts tranchants
{Tcohter = {Tint} = — {Text—>E1} = {Text—>E2} (cisaillement)

M}y : moment de torsion

Me;, Mg, : moments fléchissants
Coupure fictive : nécessaire en cas de

discontinuité d’efforts (forces/moments
concentrés, appuis)

discontinuité géométrique (changement
de direction)

Section amont/aval : selon axe X du repére
local.

Attention : I'amont n’est pas forcément a
gauche!
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Chapitre 3

Contraintes mécaniques
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Objectifs :

e Déterminer les contraintes mécaniques dans une struc-
ture.

Pré-requis :

P LAN e Notion de vecteur force

e Loi d'action-réaction (Newton III)
Chapltre 3 e Bases de la statique des solides

Contenu :
e Vecteur contrainte

e Tenseur des contraintes mécaniques

e Contraintes principales

© Dijibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S 60 /125



Vecteur contrainte

On considére un point M(x,y, z) arbitraire appartenant au solide
étudié, dans un repére orthonormé (O, X, y,Z). On examine une
surface infinitésimale dS qui contient le point M. Cette surface
est caractérisée par sa direction normale 7i (c’est-a-dire la direction
perpendiculaire), qui détermine son orientation, de la maniére sui-
vante :

i=pX+B2y+Bs2

La normale extérieure i divise |'espace en deux demi-espaces, de part et d’autre de la

facette. Selon le principe d’équilibre des actions mécaniques (troisitme loi de Newton

ou loi d’action-réaction), les efforts mécaniques exercés sur la facette inférieure df sont

égaux en valeur absolue et opposés en signe a ceux exercés sur la facette supérieure. On
—

peut ainsi définir un vecteur de contrainte 7 (M, i) au point M, associé a la normale 7

tel que :

df

=

T(M9 n) =G
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Vecteur contrainte

Décomposition

Le vecteur contrainte se décompose en :

i =
T (M, R) = onii + o+t

™ T(M,7)

ou : Va

® o, : composante normale (le long de 7) o

e o : composante tangentielle (dans le plan de dS)
Ces composantes dépendent du point M et de |'orientation de la surface. Leur unité est
le Pascal (Pa), soit N/m?2.
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Théoreme de Cauchy

Théoreme de Cau

Pour généraliser les contraintes en tout point, on introduit 7
le textbftenseur des contraintes ou tenseur de Cauchy &, qui / i a0y
est indépendant de |'orientation de la facette considérée. Ce : .
tenseur est défini en un point M quelconque par : Oy Gy
L2y | Oy
_ Oxx Oxy Oxz M ’
0 = |[Oyx Oyy Oyz 0y .'/l/—’”zx il

Ozx Ozy Ozz M.R

Le théoreme de Cauchy énonce que :

En tout point M et en chaque instant t, la dépendance du )

Tenseur des contraintes sur un

vecteur contrainte T (X, t, i) & la normale i est linéaire. cube élementaire au voisinage

d'un point M (M appartenant
au solide étudié).

3
—
<
3y
=
Il
Qu
3
o
<
[}
0O
3
Il
NL L XL
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Tenseur des contraintes — Cas général

Expression dans une base quelconque

Dans une base quelconque (€1, &, €3), le tenseur des contraintes s'écrit :

_ 011 012 013
0= |02 022 023

ag [ o
72 BluEaeas

de normale orientée selon j.
Dans le cas général, le vecteur contrainte s'écrit :

o011 o112 013 él
= |02 02 o023 c &
031 03 033

—
n

Qu

"
T (M, ) =

M, (éi,€3,€3)

sont égaux = oj; = 0j;.

Chaque composante oj; indique une contrainte agissant dans la direction i sur une surface

(éi,€3,€3)

Remarque : le tenseur est symétrique ce qui implique que les termes non-diagonaux
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Contraintes principales

Il est possible de trouver une base dans laquelle le tenseur des contraintes devient dia-
gonal. Les composantes dans cette base sont appelées contraintes principales :

_ o 0 0
o=|0 oy 0 (15)
0 0 omfy aa.em

e ¢&j, €j;, € : directions principales.

e Par convention : o; > oy > oyy.
e Dans cette base, les contraintes tangentielles sont nulles.
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Contraintes mécaniques

Définition générale

Les contraintes mécaniques représentent les efforts internes ;
7 1z . . X 0,
exercés sur une surface élémentaire dS dans un solide. ) [
Dans un repére (O, X, ¥, Z), elles se décomposent en : / e
. Tyz
o Contraintes normales : oxx, 0yy, 0z &
. . 7 0,
e Contraintes tangentielles : 7., Txz, Ty (et leurs symé- ™ 3
. o Tx
triques)
L
Tenseur associé :
- O Ty  Txz Tenseur des contraintes sur un
0= |Tyx Oyy Tyz (16) cube élémentaire au voisinage
Tox Tzy Oz d'un point M (M appartenant
au solide étudié)
Unités : souvent exprimées en MPa.
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Contraintes mécaniques — Cas des poutres

Hypothése poutre

Pour une poutre allongée selon X, les seules contraintes significatives sont :
o4 —
T(M,h) = | Txy (17)

Avec :

® 0, @ contrainte normale dans la direction longitudinale
® Ty, et Ty, : contraintes tangentielles dans la section droite
e Si Ty = Txz =0, alors X est une direction principale
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Contraintes mécaniques et torseur de cohésion

Relation entre contraintes mécaniques et torseur de cohésion

Les contraintes mécaniques sont étroitement liées au torseur de cohésion (ou aux
actions mécaniques internes). Cette relation est exprimée par :

R = ff M i).dS . 0
{Tcoh}GyR = avec GM = {y}
M = e GM AT (M, 7).dS z) q

En théorie des poutres, on a :

Ny My ff(s) Oxx.dS ff(s) (y-Tz — 2.7x).dS
{reonter=9 Ty Mg =3 [Js) To-dS Jlis) # o-dS
T, Mg GR ff(s) Txz.dS 7ff(s) Y Oxx.dS .

(18)
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Contraintes mécaniques

Dans ce module, nous nous concentrerons uniquement sur les contraintes associées a un effort
normal (contraintes normales o) et au cisaillement/effort tranchant (contraintes tangentielles

Txy Subis par une poutre.

Contraintes normales lié a un effort normal

Un solide soumis a un effort normal Ny subit une contrainte normale ox donnée par :

Nx

Oxx = —=

(19)

avec S la surface de la section droite.

Contraintes tangentielles lié a un effort tranchant

Un solide soumis a un effort tranchant T, (respectivement T,) subit une
contrainte tangentielle 7,, (respectivement 7,,) donnée par :

(respectivement Tz = %) (20)

y
Ty =5

avec S la surface de la section droite.
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Concentration de contrainte

Conce co inte

Concentration de contrainte au niveau

e Elle apparait lorsqu'on a une discontinuité de
de la zone en bleu.

la piéce avec une modification géométrique
(changement de section ou trou par exemple)

ou prés d'une charge concentrée (principe de
Saint-Venant). £ P
<+ :a : C > >
e Elle a pour conséquence d’entrainer localement
une augmentation des contraintes. Il est
important d'en tenir compte en DDS car c'est La contrainte normale en traction au
souvent la zone qui risque de céder en premier point B est donnée par :
sous |'effet des charges extérieures.
N
. - Oxx = Kttraction - =
e Pour en tenir compte, on multiplie les S

contraintes par un coefficient de concentra-
tion Kt propre a chaque type de sollicitation.
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Chapitre 4

Traction /compression - Effort normal
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Objectifs :

e Dimensionner un probléme de traction/compression.

e Résoudre un probleme de treillis (assemblage de barres).

PLAN Pré-requis :

e Principe fondamental de la statique (PFS)

Chapitre 4 Contenu :

e Caractéristiques de sollicitation en trac-
tion/compression

o Définition d'un treillis
e Méthode de Ritter (méthode des sections)

© Dijibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S 72/125



Traction-Compression

La traction (ou la compression) est une sollicitation mé-
canique provoquant |'allongement ou le raccourcissement
d'un solide le long de sa direction longitudinale (générale- "
ment selon I'axe X). Elle résulte de deux forces opposées,
de méme direction et de méme intensité, appliquées aux :
extrémités du solide. Le torseur des actions mécaniques au
point G, dans le repére R, s'écrit :

Traction

Ny
{Tcoh}G,R =40
0

o O o
-
I
=

G,R 5

Compression

=

Contrainte mécanique

En traction/compression, un corps (E) soumis a un effort
normal Ny ne subit qu'une contrainte normale oy donnée
par :
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Essai de traction

L'essai de traction consiste a soumettre une éprouvette nor-

malisée a un effort de traction croissant. Il permet d'analyser

le comportement mécanique du matériau a travers :

e le domaine élastique : raideur (module de Young), limite
d’élasticité,

e |e domaine plastique : allongement, déformation perma-
nente,

e la rupture : contrainte maximale, allongement a rupture.
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Déformation - essai de traction

Pour un corps de section circulaire :
[ Avant chargement | Aprés chargement ‘

Lo : longueur initial | L = Lo+ AL : longueur aprés chargement
do : diametre initial | d = dy — Ad : diamétre aprés chargement

avec AL et Ad respectivement les variations de longueur et
de diamétre.

Une déformation mécanique est une modification géométrique d'un corps sous
|'effet d'une contrainte mécanique. On peut définir deux déformations :
e Déformation longitudinale :

AL
= — 21
L= (21)
o Déformation transversale : Ad
= — 22
= (22)

Les déformations sont des grandeurs adimensionnelles (sans unité). .
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Déformation - déplacement

Relation entre déformation et déplacement

La déformation longitudinale moyenne est définie par :

AL
EL = 7/
Lo
ol AL est I'allongement de la poutre de longueur initiale Lg.

Localement, si u(x) est le déplacement longitudinal d'un point situé a I'abscisse
x, alors la déformation locale est donnée par :

du
e(x) = o

En cas de déformation homogene, on a : e(x) = ¢;.
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Courbe de traction

Domaine élastique et plastique

La courbe o = f(e,) présente deux grands domaines :

o Domaine élastique (0 < Re = o) : les déforma-
tions sont réversibles (retour a la forme initiale aprés
déchargement).

e Domaine plastique (o > Re = o) : les déforma-
tions deviennent irréversibles.

Résistance maximale, striction et rupture

Dans la zone plastique :

e La contrainte augmente jusqu’'a une valeur maxi-
male : la résistance maximale o, ou Rp,.

o Ensuite, débute la striction : une réduction localisée
de la section.

e Le matériau finit par rompre. L'allongement total au
moment de la rupture est noté A (allongement a la
rupture).

o, 1 2
Rupture
Im T /
O, \
N début de

striction
limite

élastique

v

avec :
o : limite élastique
om : contrainte maximale

A : allongement a la rupture
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Déformation — Domaine élastique

Oo2
o'e

Lors d'un essai de traction, le matériau se comporte d'abord de ma-
niére élastique : les déformations sont réversibles et disparaissent
a I'arrét de la sollicitation.

0.2%

Caractéristiques du domaine élastique

e Le domaine élastique est limité par la contrainte og, au-dela de laquelle la déformation
devient irréversible.

e Dans la pratique, une limite conventionnelle 3 0.2% de déformation plastique est
souvent utilisée : 09 2.

e La relation entre contrainte et déformation est linéaire, appelée loi de comportement.
Elle est donnée par la loi de Hooke :

U:E'EL

ol E est le module de Young, caractéristique de la rigidité du matériau (en GPa).

E, module
“de Young

&
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Déformation — Effets transversaux

Coefficient de Poisson

e Lors d'un essai de traction, la poutre s'allonge dans la direction longitudinale, mais sa
section transversale se réduit. Ce phénomeéne est lié a la nature du matériau et a son
comportement mécanique.

e Cette contraction transversale est reliée a |'allongement longitudinal par le coefficient

de Poisson v, défini par :
ET

€L

ey : déformation longitudinale,
et : déformation transversale (négative en traction).

e La valeur de v varie typiquement entre 0 et 0.5 :

Aciers : v =~ 0.28 a 0.30
Aluminium : v =~ 0.34
Matériau incompressible (idéal) : v = 0.5
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Traction /Compression : dimensionnement

Critére de dimensionnement

Lors du dimensionnement d'une piéce soumise a un ef-
fort de traction ou de compression, il faut vérifier que la [N
contrainte o supportée par la piéce est inférieure a la li-
mite d’élasticité o (ou résistance élastique Re) :

oc<og=Re (23)

En pratique, un coefficient de sécurité s > 1 est utilisé s
pour prendre en compte les incertitudes liées au matériau,
a la géométrie, aux conditions d'appui, et aux charges
appliquées. Le critére de dimensionnement devient alors :

o< ZE =R, (24) £
S

avec Rpe = U—SE la résistance pratique élastique.
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Traction /compression : concentration de contrainte

Concentration de co inte

La contrainte nominale o,om = % correspond a la contrainte moyenne sur la section.
En présence de discontinuités (trous, changements de section, etc.), il y a un risque
accru d’amorcage de fissure. La contrainte locale est amplifiée par un coefficient de

concentration K; :

Omax = Kt Onom

Pour assurer la sécurité, le critére de dimensionnement devient :
OF
Omax < ? == Rps

ol of est la limite élastique et s le coefficient de sécurité.

<y

- r =

F T < F

« | e
A * B C
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Traction/compression : exercice

Dans cet exercice, on se propose de déterminer les actions mécaniques intérieures
et de vérifier le dimensionnement. Nous allons procéder en trois étapes :

1. Contrainte dans le trongon JAB|
2. Contrainte dans le troncon |BC|
3. Contrainte au point B (concentration de contrainte)

7 Les données du probléeme sont :
1z Grand diamétre : D=8 mm
F’ T e Petit diamétre : d=6 mm
| Rayon du congé : r=0.6 mm
<+ P d Force : F= 500 N
Limite élastique : Re=30 MPa
Coefficient de sécurité : s=1.2

+"m
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Traction/compression : exercice

1

L.z

; SR
“[: >
1. Contrainte dans le troncon JABJ :
e On commence par déterminer le torseur de cohésion sur le trongon JAB] :
F 0 500 0
{Tecoh}6,r = —{Text—E }6,r = —{Taler =40 0 =4 0 O
0 0)sr 0 0k
e On détermine la contrainte normale sur le troncon JABJ :
N F
Oxx = @ = — — 9.946 MPa
Sae T
o On vérifie le critere de dimensionnement :
30
O = 9.946 MPa < ZE = = — 25 MPa
s 1.2

Ce troncon est donc bien dimensionné.
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Traction/compression : exercice

1

L.z

f“m
* Ty

A - B C
2. Contrainte dans le troncon |BC[ :
e On commence par déterminer le torseur de cohésion sur le trongon |BC[ :

F 0 500 O
{Tcon}6,r ={Text—E}6,r ={Tc}er=<0 O =4 0 0
0 0 G.R 0 O G.R
e On détermine la contrainte normale sur le troncon |BC| :
N F
Ox = —— = —> = 17.686 MPa
Sec %
o On vérifie le critére de dimensionnement :
oo = 17.686 MPa < ZE — 3% _ 95 mpa
s 1.2

Ce troncon est donc bien dimensionné.
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Traction/compression : exercice

Y l\\
(4 .
NIR\NE ,ﬁ
“l o > e
1} . X NS roua | ||
A B c | \\§$
' ~_ =S
0.08 :

i
3. Contrainte au point B (concentration de contrainte) :
e On commence par la contrainte normale au point B. On considérera la

section d car la contrainte y est maximale :

N F
Oxx = =—— = —5 = 17.686 MPa
Sec %
e On détermine le coefficient de concentration K :

D 8 r 0.6

Dimensionnement des structures (DDS) - S2
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Traction/compression : exercice

I
’ | -
N [ T o i’\ \ !
“ | [ ] r SN T
4_ D d .-> : ‘ il =133
| TRONSL [ e
A B c | \\ e N

3. Contrainte au point B (concentration de contrainte) :

K ~1.38

e On Vérifie le critére de dimensionnement :

K - oxx = 1.38 x 17.686 = 24.406 MPa < IE _ 1= 25 MPa
s .

La structure est donc bien dimensionnée.
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Traction /compression : exercice

F __F
<+ D d 5>

Remarques finales :
e La piece est correctement dimensionnée vis-a-vis des criteres de

résistance.

e On observe que la contrainte augmente quand la section diminue
(UBC > UAB)-

e Le point B, au niveau du changement de section, est le point
critique a cause de la concentration de contrainte. C'est la que la
contrainte maximale apparait.
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Traction /compression : vérifier le dimensionneme

Face a un probléme en traction/compression, la démarche a employer pour vérifier le
dimensionnement est la suivante :

Réaliser le bilan des actions mécaniques extérieures (BAME).

Appliquer le principe fondamental de la statique (PFS) pour déterminer les inconnues
de liaison.

Déterminer le torseur de cohésion. Attention : effectuer autant de coupes fictives que
nécessaire (ex : changement de direction, liaisons, efforts ponctuels...).

Identifier le point le plus sollicité (point critique) a I'aide des diagrammes de sollicita-
tions.

Vérifier le critére de dimensionnement :

o
US—E:Rpe
s

(penser a intégrer un éventuel coefficient de concentration K;)
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Traction /compression : déterminer les dimensions

Face a un probléme en traction/compression, la démarche a employer pour déterminer
les dimensions d'une structure est la suivante :

Réaliser le bilan des actions mécaniques extérieures (BAME).

Appliquer le principe fondamental de la statique (PFS) pour déterminer les inconnues
de liaison.

Déterminer le torseur de cohésion. Attention : effectuer autant de coupes fictives que
nécessaire (ex : changement de direction, liaisons, efforts ponctuels...).

Identifier le point le plus sollicité (point critique).

Utiliser le critére de dimensionnement pour exprimer une contrainte maximale admis-
sible, puis calculer les dimensions nécessaires.

Exemple : pour une section circulaire de diametre D, on obtient :

N
USE:Rpeégnge:\» < Rpe
s

2
4

D’ou la condition minimale sur le diamétre :

D > AN
- 7 - Rpe

Dijibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S2
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Compression : le cas du flambement

Flambement

Une structure en compression a tendance a se rac-
courcir. Toutefois, au-dela d'une certaine valeur
de charge, dite charge critique, la structure peut
se déformer latéralement de maniére instable : on
parle de flambement.

La charge critique de flambement est donnée par
la formule d’'Euler :

e

w2 E-|
L

=

Fo=

avec :
e F. : charge critique de flambement (N)

e E : module de Young (Pa)

e | : moment d'inertie de la section (m*)

e L, :longueur équivalente entre deux points d’in-

flexion (m)
Cette formule s'applique a des colonnes élancées Flambement d’un pont © Esprit Génie
avec des conditions d'appui bien définies. Civil
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Statisme des systemes mécaniques

Cadre d’analyse

Le Principe Fondamental de la Statique (PFS) permet d’établir les conditions d'équilibre
d'un systéme mécanique indéformable.

Il conduit aux équations suivantes :

e En 2D (plan), on dispose de 3 équations d’équilibre :

Y Fx=0
Y. F, =0
> M=0
e En 3D (espace), on dispose de 6 équations d’équilibre :
S F=0,>F=0%F=0
> Me=0,> M,=0,> M, =0
e Ces équations permettent de déterminer, au maximum :

3 inconnues de liaison indépendantes en 2D
6 inconnues de liaison indépendantes en 3D

Avant toute résolution, il est essentiel de :
établir le bilan des inconnues de liaison
comparer avec le nombre d’équations disponibles

Objectif : identifier si le systéme est isostatique, hypostatique ou hyperstatique.
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Statisme des systemes mécaniques

Degré d’hyperstatisme

Le degré d’hyperstatisme permet de déterminer si un systeme mécanique peut étre résolu
uniquement a I'aide du Principe Fondamental de la Statique (PFS).
On utilise la relation :

h=N;— Ne

avec :
e N; : nombre d’inconnues de liaison (réactions),

e N : nombre d'équations d'équilibre indépendantes (3 en 2D, 6 en 3D),
e h : degré d'hyperstatisme.

Trois cas peuvent se présenter :

e h < 0 : Systeme hypostatique — systeme mobile, instable ou insuffisamment
contraint.

e h = 0 : Systéme isostatique — les équations d’'équilibre suffisent a déterminer les
inconnues.

e h > 0 : Systéme hyperstatique — la résolution nécessite des équations supplémen-

taires (lois de comportement, compatibilité des déformations, etc.).

brilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S2
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Ava

ntages des structures hyperstatiques

I €t des structures hyperstatiques

Une structure hyperstatique est une structure dont I'équilibre ne peut pas étre déterminé

u

niquement par le principe fondamental de la statique. Elle présente plusieurs avantages

mécaniques et structurels :

Meilleure répartition des efforts : les charges sont réparties sur plusieurs éléments
porteurs.

Répartition plus uniforme des contraintes : diminution des concentrations de
contraintes locales.

Rigidité accrue : fleches et déformations plus faibles sous chargement.

e Sécurité améliorée : présence de redondances permettant une reprise des efforts en

cas de défaillance locale.

e Meilleur comportement aux actions dynamiques (vent, séisme, charges mobiles).

e Durabilité et confort d’usage : réduction de la fatigue, des vibrations et des dégrada-

tions.
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Hyperstatisme : exercice

On considére une poutre bi-encastrée soumise a une force ponctuelle horizontale.

% F
——
a b
< b= >

Poutre encastrée en A et C. Une force horizontale —F est appliquée en un point B avec AB = 3,
BC = b, donc L = a+ b.

Travail demandé :
1. Réaliser une schématisation compléte du systéme avec les liaisons et la force appliquée.
2. Appliquer le principe fondamental de la statique (PFS) pour écrire les équations
d’équilibre.
3. Calculer :

le nombre d’inconnues de liaison N;,
le nombre d’'équations disponibles N,
le degré d’hyperstatisme h = N; — Ne.
4. Suggestion : proposer un moyen de rendre le systéme isostatique (ex : transformation
d'une liaison ou suppression d'une réaction).
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Hyperstatisme : exercice — solution (1/2)

Considérons la poutre bi-encastrée avec une force ponctuelle —F appliquée en B.

<t

AN\
> i
AT
®

o

N

a b

A

Poutre encastrée en A et C, longueur totale L = a + b.

1. Schématisation :
Encastrement en A : 3 réactions inconnues X;, Y,, M,

Encastrement en C : 3 réactions inconnues X¢, Y¢, M.
Force externe —F appliquée au point B, direction —x

2. Application du principe fondamental de la statique (PFS) :
En 2D, on dispose de 3 équations d’équilibre :

Sr=0, Y F=0 Y M=o

Dimensionnement des structures (DDS) - S2 95 /125
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Hyperstatisme : exercice — solution (2/2)

3. Calcul du degré d’hyperstatisme :

N; =6 (réactions inconnues : X, Ya, Ma, Xc, Ye, M)
N. =3 (équations d'équilibre en 2D)
h=N—N.=6—-3=3

4. Conclusion :
Le systeme est hyperstatique de degré 3.

Les équations d'équilibre seules ne suffisent pas pour déterminer toutes les
réactions.

Il faut ajouter des équations supplémentaires basées sur la compatibilité des
déformations et les lois de comportement des matériaux.

5. Suggestion :

Pour rendre le systéme isostatique (résoluble uniquement par PFS), on peut remplacer
I'un des encastrements par une liaison plus simple (ex. appui simple) réduisant ainsi le
nombre d'inconnues.
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Hyperstatisme : exercice — résolution (1/2)

Hypotheses :

e Encastrements en A et C : déplacements verticaux et rotations nuls,
wa =0, w'AZO7 we =0, w/C:O
oll w(x) est la fleche (déplacement vertical), et w(x)' = Z—‘)’(V la rotation (pente de la poutre).
e Réactions inconnues : X, Ya, Ma, Xc, Ye, Mc.

Etape 1 : Equilibre statique
Appliquer le principe fondamental de la statique (PFS) pour écrire les équations d’équilibre :

ZFX:O, ZFy:o, ZM:O

Etape 2 : Relation moment—courbure
La flexion engendre une courbure w’/(x) liée au moment fléchissant :

d?w M(x)
7 _gw _
W)=z El

On exprime les déplacements verticaux et rotations en A et C en fonction des moments M,, M.

Remarque : cette méthode repose sur des notions de flexion vues au semestre 3.
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Hyperstatisme : exercice — résolution (2/2)

Etape 3 : Conditions de compatibilité
Les appuis étant encastrés, les déplacements et rotations en A et C doivent étre nuls :

wa =0, w/AZO, we =0, w'CZO

Ces conditions apportent 4 équations supplémentaires.

Etape 4 : Résolution
On résout le systéme de 6 équations a 6 inconnues (Xa, Ya, Ma, Xc, Ye, Mc).

Résultats typiques :

Fb%a Fa’b
Mo=" M=
Fb Fa
Ya= T, Ye = T

Les réactions horizontales X, X. sont déterminées par I'équilibre horizontal.

Conclusion :
La combinaison des équations d’équilibre et des conditions de compatibilité permet de résoudre

ce probléme hyperstatique.

98 /125
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Un treillis (ou structure a barres) est une structure compo-

sée de barres rectilignes assemblées de maniére triangulée,

reposant sur les hypothéses suivantes :

e Les barres sont modélisées par leurs lignes médianes, si-
tuées dans un méme plan, et se rejoignent en des points
appelés nceuds.

e Chaque nceud est modélisé comme une rotule idéale
(sans frottement), permettant uniquement des rotations.

e Les efforts extérieurs sont appliqués exclusivement aux
neceuds (jamais directement sur les barres). Cela permet
d’éviter que les barres soient sollicitées en flexion.

e Chaque barre est soumise a un effort axial (ou effort nor-
mal) : une force de traction ou de compression appliquée
aux extrémités.

e Le poids propre des barres est considéré comme négli-
geable.

Pont en treillis © Eugenio
Merzagora

Un treillis peut étre isostatique ou

hyperstatique.
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Degré d’hyperstatisme

Le degré d’hyperstatisme d'un treillis plan peut étre déterminé par la formule suivante :

h=b+r—2n

avec h représente le degré d'hyperstaticité, b le nombre de barres, r le nombre de réactions
d’appui et n le nombre de nceuds.

Un treillis est :

e isostatique si h =0,

e hyperstatique si h > 0,

e hypostatique si h < 0 (structure instable ou mal modélisée).

Exercice : Déterminer le degré d'hyperstatisme du treillis ci-dessous.

F
v
F
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ralités et méthodes de résolution

res en treillis

Les treillis sont des structures largement utilisées dans
de nombreux domaines industriels, notamment dans la
construction, le génie civil et |'aéronautique (ex. : ponts,
charpentes, fuselages d’avion).

Leur principal intérét réside dans leur capacité a former
des structures légeres et rigides, capables de résister ef-
ficacement aux efforts extérieurs, en particulier aux charges
axiales (traction / compression).

Méthodes d’analyse des treillis :
e Méthode graphique de Cremona.

o Méthode des nceuds. Pont en treillis
© Eugenio Merzagora

e Méthode des sections (ou méthode de Ritter).

Dans ce cours, nous privilégierons la méthode des sections
de Ritter, qui permet de déterminer rapidement I'effort dans
une ou plusieurs barres sans analyser |'ensemble de la struc-
ture.
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Méthode de Ritter (méthode des sections)

La méthode de Ritter, aussi appelée méthode des sections, permet de déterminer les
efforts internes (traction ou compression) dans les barres d'un treillis sans analyser tous
les noeuds.

Elle repose sur les principes suivants :
e 1. Calcul préalable des efforts externes : détermine d'abord les réactions d'appui en
appliquant le principe fondamental de la statique (PFS) a I'ensemble du treillis.

e 2. Section fictive : coupe le treillis en traversant au maximum trois barres (dont deux
doivent converger en un nceud commun). Cette coupure permet d'isoler une partie de
la structure.

e 3. Analyse de I'équilibre : applique les équations d’équilibre a |'une des deux portions

isolées :
Fx=0
F, =0
M=0

o Cela permet de calculer les efforts normaux dans les barres sectionnées.
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Méthode de Ritter — Exemple (1/2)

On consideére le treillis ci-contre, soumis a une force F= F y appliquée au point B.

Les réactions d'appui sont :

Ry=075Fy, Rg=025Fy

Les barres font longueur L, et I'angle incliné est a = 60°.

Objectif : déterminer les efforts internes dans les barres 4, 5 et
6.

Etape 1 - Isolement de la partie gauche :
On coupe le treillis selon une section traversant les barres 4, 5
et 6.

Etape 2 — Expression vectorielle des efforts internes :
Ny = Ny % (barre 4 horizontale)

Ns = N5 (cos a X + sina y) (barre 5 inclinée)

Ne X (barre 6 horizontale)
Etape 3 — Equilibre vertical (projeté sur y) :

Z Fy = —F + Nssina+ Ry = 0 = N5 = 0.29 F (traction)

jibrilla NOMA (UCB Lyon 1)
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Figure 1 : Treillis initial

Figure 2 : Coupe du treillis
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hode de Ritter — Exemple (2

Equilibre des moments au point D (nceud de coupe) : On applique :

ZMD:(Y

En pratique (projection scalaire) :

Mp=Rp-DA—F -DB+ Ns-h=0= Ng =0.14 F (Traction)

Equilibre horizontal (projeté sur %) :

Z Fx=—Ns+ Nscosa+ Ng =0 = Ny = —0.29 F (Compression)

Interprétation des signes :

v' Ns > 0 : barre en traction

V' Ng > 0 : barre en traction

V' Ng < 0 : barre en compression

Conclusion : La méthode de Ritter permet de déterminer rapidement les efforts dans certaines
barres en combinant le PFS et une bonne stratégie de coupe.
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Résumé — Traction / Compression, Treillis, Hyperstaticité

Formules tions clés

Contrainte normale moyenne : o = %

Déformation longitudinale : & = %

Loi de Hooke (traction/compression) : o =E -¢
Critére de résistance (traction/compression) : o < %

Treillis : assemblage de barres travaillant uniquement en traction ou en compres-
sion.

Méthode de Ritter : permet de déterminer les efforts dans les barres par isolement
d’une partie du treillis.

Hyperstaticité : h=N; — N,
N; : nombre d'inconnues statiques (appuis + barres)
Ne : nombre d'équations d'équilibre disponibles
Systéme isostatique si h = 0, hyperstatique si h > 0
Concentration de contrainte : présence de zones ou la contrainte locale dépasse
significativement la contrainte moyenne, souvent due a des géométries irrégulieres,

des entailles ou des points d’appui. On multiplie alors la contrainte nominale par
un coefficient de concentration K;
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Chapitre b

Cisaillement - Effort tranchant
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Objectifs :
e Analyser un probleme soumis a des efforts tranchants
(cisaillement) et en déterminer les dimensions.

PLAN e Calculer les contraintes tangentielles au niveau de la

. section de la poutre.
Chapitre 5

Contenu :
e Caractéristiques du cisaillement.

e Critéres de dimensionnement en cisaillement.
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Cisaillement

Un corps est soumis & des efforts tranchants (ci-
saillement) lorsqu’il subit deux forces égales, de
méme direction mais de sens opposés, provoquant
le glissement d'une partie (E1) par rapport a une
autre (Ep).

Le torseur de cohésion s'exprime ainsi :

0 0 T
{Tcoh}c,R = Ty 0 L
T, 0 Cisaillement

G,R

oti Ty est I'effort tranchant selon I'axe y et T,
celui selon I'axe Z.

La vérification de la résistance d'une structure au cisaillement est cruciale dans de nom-
breux cas comme le dimensionnement des axes, goupilles, boulons, ...
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ainte mécanique liée aux efforts tranchants (cisaillement)

En cisaillement simple, un corps (E) soumis a un effort tranchant T génére une contrainte
tangentielle 7.
La contrainte tangentielle 7, (ou 7xz) s'exerce dans le plan de la section, selon la direction

¥ (ou Z), et s’exprime par :
m= D (oo m=)
Xy — T4 Xz — T o
Y7 s S
ou S est la section droite soumise au cisaillement.

Cette contrainte correspond a une valeur moyenne, souvent notée Tmo, ou .

Essai de cisaillement

Un essai de cisaillement pur ne peut pas étre réalisé physiquement, car le cisaillement
simple agit uniquement sur une section précise de la poutre et non sur I'ensemble.
Néanmoins, un exemple sera présenté par la suite afin d'illustrer les effets du cisaillement.
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Exemple de cisaillement : rivet

f“l'u

i
i
i
i
i
i
i
i
i
Y
\
\
\
i
i
i
H
i
i

v

Rivet

Rivet soumis a un effort de
cisaillement

En zoomant sur un élément infinitésimal
le long de la poutre, on observe un glis-
sement transversal provoqué par le ci-
saillement.

Ce glissement est proportionnel a I'inten-
sité de |'effort tranchant appliqué.

© Djibrilla NOMA (UCB Lyon 1)
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Cisaillement - exercice

Dans cet exercice, on cherche a déterminer le torseur de cohésion de la
poutre JABC[ soumise a une force concentrée F.

A
7

A B

v <t

Poutre JABC|[ avec force appliquée

Objectif : analyser la répartition des efforts internes (cisaillement et
moment) dans les troncons |ABJ et |BC|.

© Djibrilla NOMA (UCB Lyon 1)
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Cisaillement - exercice

On modélise le torseur de cohésion sur chaque troncon.
Troncon ]ABJ :
Troncon ]BC[ :

0 0
{Tconte, m =4 —F 0 0 o0
0 F-Ax GLR {Tcoh}Gzszz 0 0
0 0). &
H X i 2,2
Ici, —F correspond a l'effort tran-
chant (cisaillement) et F - Ax au mo- Aucun effort n'est transmis dans ce
ment fléchissant sur la petite lon- troncon (pas de force ni moment).

gueur Ax.

Remarque : Le moment fléchissant sur JABJ[ est proportionnel a Ax. Pour
Ax < 1, il est négligeable par rapport au cisaillement. On se concentre
donc principalement sur I'effort tranchant.
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Déformation de cisaillement ou angle de

distorsion /glissement

Angle de distorsion

Glissement transversal

Lors d'un cisaillement, le corps subit une
déformation de cisaillement, également
appelée angle de glissement ou angle de
distorsion v (en radians). Cet angle est
défini géométriquement par :

Ah
Ax
ol Ah représente le glissement trans-
versal (en métres) et Ax la distance (en
métres).

Si I'angle de distorsion -~y est trés faible,

alors |'approximation suivante est va-
lable :

tanyyx = (25)

Ax _Ah
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Essai de cisaillemen

ssai de cisaillement

Bien qu'un essai de cisaillement pur ne soit pas réalisable
physiquement, il est possible d'étudier le comportement
du matériau lorsque le moment fléchissant est négligeable "ﬁ”

(comme dans I'exemple précédent). Dans ce cadre, le corps  maine somaine

Elastique plastique

étudié est soumis a une force F de cisaillement (effort tran-
chant) et on mesure la relation entre I'effort tranchant et le Finax

glissement transversal Ah. Rupture

On observe deux zones distinctes (élastique et plastique).
La frontiére entre ces deux zones correspond a la force li-
mite élastique au cisaillement Fe. A partir de cette force, on
définit la résistance élastique au glissement Reg (également
appelée résistance au cisaillement 7g) par :

F.
Reg:TE:?e

avec S la surface de la section droite.
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Critére de résistance en cisaillement

Module de Coulomb

Dans le domaine élastique, la relation (7,7) est linéaire et définie par :

E

Tmoy = G -y avec G:m

avec Tmoy la contrainte tangentielle moyenne dans la section droite, G le module de
Coulomb ou module de cisaillement, E le module de Young et v le coefficient de Poisson.

Critere de résistance en cisaillement

Le critére de dimensionnement est donné par :

Reg

Tmoy < Rpg avec Rpg =

avec Rpg la résistance pratique au glissement (ou au cisaillement), Tmo, la contrainte
tangentielle moyenne, Reg la résistance élastique au glissement, et s le coefficient de
sécurité.
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Résumé — Cisaillement

Contrainte tangentielle moyenne :  7poy = %
Déformation (angle de distorsion) : ~ = %
Module de Coulomb: 7=G-v avec G =
Critére de résistance :  Tmoy < Rpg = %

Formules clés

E

2(1+v)
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Chapitre 6

Synthese
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Bases du dimensionnement des structures

Bases de [a DDS

Théorie des poutres (1D) : Une poutre est un élément caractérisé par une ligne, appelée
fibre moyenne ou neutre, qui présente une courbure faible par rapport a la longueur de la
piéce, ainsi qu’une section perpendiculaire a cette fibre, qui varie lentement en fonction
de la longueur de la poutre. Cette section est appelée section droite. De plus, la dimension
longitudinale de la poutre est au moins cinq fois plus grande que ses autres dimensions
transversales.

e Hypothéses de la DDS :
- Un matériau est dit « homogene » s'il posséde les mémes propriétés mécaniques et
thermiques en tout point.
- Un matériau est dit « isotrope » si ses propriétés mécaniques et thermiques sont identiques
dans toutes les directions.
- Un matériau est dit « élastique linéaire » s'il retrouve sa forme initiale aprés avoir subi un
cycle de charge/décharge. Cette propriété implique que le matériau ne se déforme pas ou trés
peu.
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Bases du dimensionnement des structures

Les hypothéses fondamentales du dimensionnement des structures (DDS) sont :

Hypothese de Navier-Bernouilli " Fl

]
Les sections droites planes restent droites et planes I ~~d ‘
aprés déformation. '

Principe de Saint-Venant

Les résultats obtenus lors du dimensionnement des
structures ne sont valides qu'a une distance suffi-
samment éloignée de la zone d’application des efforts
concentrés (zone de singularité).

Hypothése des petites déformations (HPP)

Le solide est soumis a de petits déplacements (1/100 de la longueur de la fibre moyenne)
et de petites déformations.
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Torseur de cohésion — torseur de section

Le torseur de cohésion modélise I'action mécanique exercée par une partie de la poutre
(Ez , aval) sur une autre partie (E;, amont), de part et d’autre d’une coupure fictive. ||
permet de décrire les actions internes de la poutre. Ce torseur est exprimé au point G,
dans le repére local de la poutre étudiée.

{Tcon}6,R = {Tint}6,r = —{Text—E,}6,R = {Text=E, }G6,R

Attention : Lors de I'analyse des actions internes d'une poutre, il est nécessaire de réaliser des

coupes fictives dés que |'une des situations suivantes se présente :

e une discontinuité liée 3 la présence d’actions mécaniques concentrées (efforts ou moments
mécaniques extérieurs, liaisons mécaniques (pivot, rotule, appui-plan),etc.)

e une discontinuité géométrique (changement de direction de la ligne moyenne).
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Torseur de cohésion - torseur de section

Le torseur de cohésion est donné par :

Nx Mtx
{Tcoh}G,R =97y Mg
T Mfz

G,R

Avec N, effort normal suivant I'axe X, T, et T, efforts tranchants respectivement
suivant les axes y et Z; My moment de torsion suivant I'axe X, Mg et Mg
moments fléchissants suivant les axes y et Z.

J

.
Les diagrammes des sollicitations permettent de visualiser graphiquement les points ou
les zones de la poutre les plus sollicités (valeurs les plus élevées) en vue du
dimensionnement des structures.
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Contraintes mécaniques et torseur de cohésion

Relation entre contraintes mécaniques et torseur de cohésion

En théorie des poutres, le torseur de cohésion est relié aux contraintes mécaniques par :
N M, ff(s;) Oxx-dS ff(s) (y-Te — 2.7%).dS
{renter=9 Ty Ms = ff(s) Tyy-dS ff(5) Z 0x.dS
T, Mg GR ff(s) Tyz.dS —ff(s) Y Oxx.dS

© Dijibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S2 122 /125



Traction-compression

Contrainte normale :

N
o= — Loi de Hooke :
S
Déformations : oc=E-¢g
- Déformation longitudinale :
avec E, le module de Young.
_ AL
EL = To Coefficient de Poisson :
. . —er
- Déformation transversale : v =
L
Ad
Er = d_o Critere de dimensionnement :
. . . Re
- Déformation-déplacement : 0 < Rpe = —
s
du
e(x) = —
()=
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Cisaillement - Efforts tranchants

Contrainte tangentielle :

Déformation de cisaillement / angle de distorsion / angle de glissement :

¢ Ah
any = —
U Ax

Relation contrainte tangentielle - distorsion
Tmoy = G- Y

avec G module de Coulomb ou de cisaillement :

E

=ity

Critere de dimensionnement :
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Grandeurs physiques

| Grandeurs physiques | Symbole | Unité \

Longueur L metre (m)

Surface S metre” (m?)
Force/action mécanique F Newton (N)

Moment d'une force M Newton - métre (Nm)

Déplacement u métre (m)
Déformation € sans unité
Coefficient de Poisson v sans unité

Glissement transversal Ah metre (m)

Distorsion radian (rad)
Contraintes mécaniques Pascal (Pa) souvent exprimé en MPa
Module de Young Pascal (Pa) souvent exprimé en GPa
Module de Coulomb Pascal (Pa) souvent exprimé en GPa

o|m|al2
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