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Pourquoi le dimensionnement des structures ?

(a) Peugeot 408
© Peugeot

(b) TGV M
© SNCF - Alstom Avelia Horizon

(c) Eolienne
© Radio France - Stéfane Pocher

(d) Cuve
© Labbe Process Equipment
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Qu’est que le dimensionnement des structures ?

Dimensionnement des structures
Il s’agit d’une discipline scientifique qui permet de
déterminer ou de vérifier les propriétés d’un produit
afin de prévenir sa rupture lors de son utilisation.

Dimensionner une structure signifie :

• Calculer les dimensions adéquates.
• Choisir les matériaux les plus adaptés.

pour que la structure étudiée supporte les actions
mécaniques extérieures appliquées.

Cette discipline est en lien étroit avec les autres
modules : mécanique, science des matériaux, concep-
tion,...

Il est intéressant de noter que, contrairement à la mé-
canique qui considère des solides indéformables, en
DDS, on s’intéresse à des solides déformables.
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Objectifs du module

• Déterminer les actions mécaniques intérieures d’une structure.

• Identifier la nature de la sollicitation (traction/compression,
cisaillement, etc.).

• Dimensionner un problème avec la théorie des poutres.

• Identifier le point critique (de vulnérabilité) d’une structure en
vue de son dimensionnement.

• Vérifier et valider les résultats avec une étude numérique.
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Organisation du module

Répartition horaire :
• 4 séances (8h) de cours magistraux (CM)
• 9 séances (18h) de travaux dirigés (TD)
• 1 séance (4h) de travaux pratiques (TP)

Évaluations :
• 2 devoirs surveillés (DS) de 1h30 (2h pour les 1/3 temps) sur

les travaux dirigés
• 1 note de travaux pratiques
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Chapitre 1

Introduction et bases du dimensionnement des
structures
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PLAN
Chapitre 1

Objectif :
Présenter la théorie des poutres et ses grandes hypo-
thèses

Contenu :
• Classification des corps
• Théorie des poutres
• Hypothèses en DDS
• Principe de superposition
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Classification des corps

Les corps peuvent être classés en trois familles :

• Corps uni-dimensionnel (1-D) : les poutres (dont la
longueur transversale L est beaucoup plus grande
que les autres dimensions du corps).

• Corps bi-dimensionnel (2-D) : les plaques (l’épais-
seur e de la plaque est au moins 10 fois inférieure
aux autres dimensions).

• Corps tri-dimensionnel (3-D) : les solides.

Note importante :

Dans ce module, nous nous concen-
trerons sur les corps de type poutre.

Théorie des poutres

Poutre Plaque Solide
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Exercices d’application

Indiquer la nature des solides ci-dessous :

Hélicoptère Clé à pipe débouchée Barres de treillis

Table Airbus 380 Cuve

Grue de levage Tôle métallique
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Théorie des poutres

Définition

Une poutre est une pièce caracté-
risée par une ligne, appelée fibre
moyenne ou neutre, présentant une
courbure faible devant sa longueur,
ainsi qu’une section perpendiculaire
à cette fibre, appelée section droite,
dont la variation est lente le long de
la poutre.

Une poutre est caractérisée par :
• Une longueur L de la fibre moyenne très

supérieure aux dimensions transversales
(rapport > 5).

• Un rayon de courbure de la fibre
moyenne grand devant les dimensions
transversales (rapport > 5)).

• Un profil sans discontinuité.

Conventions de repérage :
• L’axe (O, x⃗) suit la fibre moyenne de la

poutre.
• Le plan (y⃗ , z⃗) correspond à la section

droite.
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Caractéristiques des poutres

Trois types de poutres :

• une poutre gauche : poutre dont la fibre
moyenne est une courbe gauche (3-D : trois
dimensions dans l’espace).

• une poutre plane : poutre dont la fibre
moyenne est une courbe plane (2-D : conte-
nue dans un plan).

• une poutre droite : poutre dont la fibre
moyenne est un segment de droite (1-D).

La section (S) de la poutre peut être
soit :
• constante : la section droite (S) ne

varie pas le long de la fibre moyenne.
• variable : la section droite (S) n’est

pas identique le long de la fibre
moyenne.

S =
∫

S
dS (1)
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Exemples de types de poutres

Poutre droite (1D) :
Poutre en acier de type IPN utilisée pour soutenir un plancher dans une
structure de bâtiment industriel.
Fibre moyenne = segment de droite.

Poutre plane (2D) :
Arche en béton armé d’un pont en arc (forme parabolique ou
semi-circulaire).
Fibre moyenne = courbe contenue dans un plan.

Poutre gauche (3D) :
Rail hélicoïdal d’un toboggan ou spirale architecturale.
Fibre moyenne = courbe spatiale non plane.
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Où sont les poutres ?

• Où repère-t-on des poutres
droites ?

• Des poutres planes ?

• Des poutres gauches ?

Pont en arc – poutre plane

Hélice – poutre gauche
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Hypothèses utilisées en DDS

Hypothèses géométriques dans ce module

• Solide « allongé » : une dimension largement dominante (type poutre)
(rapport > 5).

• Fibre moyenne droite (1-D) : poutre droite.

• Section droite constante ou à variation lente.

• Section perpendiculaire à la fibre moyenne.

• Poutre avec un plan de symétrie longitudinal.
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Hypothèses utilisées en DDS

Matériaux

• Un matériau est dit « homogène » s’il pos-
sède, en tout point, la même composition
et la même structure. Ainsi, le matériau
possède les mêmes propriétés mécaniques
et thermiques en son sein.

• Un matériau est dit « isotrope » si ses
propriétés mécaniques et thermiques sont
identiques dans toutes les directions.

• Un matériau est qualifié d’« élastique li-
néaire » s’il retrouve sa forme initiale après
avoir subi un cycle de charge et décharge.
Cette propriété implique que le matériau se
déforme peu, voire pas du tout.

À savoir

Les caractéristiques in-
trinsèques du matériau,
telles que l’homogénéité
et l’isotropie, sont éva-
luées au niveau de sa mi-
crostructure, c’est-à-dire
à des échelles très pe-
tites.

(cf. cours de SDM)

Elastique
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Hypothèses utilisées en DDS

Isotropie et homogénéité
(© R. Atmani)

Isotropie et homogénéité
(© H.B. Lynn)

Matériau homogène :
Exemple : acier inoxydable

Matériau isotrope :
Exemple : verre trempé
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Hypothèses utilisées en DDS

Quelques hypothèses fondamentales

• Hypothèse de Navier-Bernoulli : Les sections
droites et planes demeurent droites et planes
après déformation.

• Principe de Saint-Venant : Les résultats obte-
nus lors du dimensionnement des structures ne
sont valables qu’à une distance suffisante de la
zone d’application des efforts concentrés, ap-
pelée zone de singularité.

• Hypothèses des petites déformations (HPP) :
Le solide subit de petits déplacements (de
l’ordre de 1/100 de la longueur de la fibre
moyenne) ainsi que de petites déformations.

Illustration du principe de Saint-Venant
© COMSOL

Cliquez ICI pour un résumé des hypothèses de la DDS (© TSI Alès).
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Principe de superpositions

Définition

Petites déformations : déplacements et changements de forme suffisamment
faibles (typiquement < 1% de la dimension caractéristique) pour que la relation
entre contraintes et déformations soit linéaire.

Élastiques : le matériau retrouve sa forme initiale après suppression des charges,
sans déformation permanente.

Sous ces conditions, les hypothèses linéaires s’appliquent, ce qui permet notam-
ment l’usage du principe de superposition. Ce principe stipule qu’un système
de forces extérieures est équivalent à la somme des forces individuelles agissant
séparément.
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Chapitre 2

Torseur de cohésion et sollicitations simples
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PLAN
Chapitre 2

Objectifs :
• Appliquer la théorie des poutres.

• Déterminer les efforts mécaniques internes.

Pré-requis (cf. cours de mécanique S1) :
• Modélisation des actions mécaniques extérieures
• Principe fondamental de la statique (PFS)

Contenu :
• Efforts internes
• Définition du torseur de cohésion/section
• Sollicitations simples
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Rappel : actions mécaniques extérieures

Les actions mécaniques extérieures sont
des conditions aux limites appliquées au
système. Elles provoquent un mouvement
ou une déformation de la structure étudiée.
Elles peuvent être de deux types :

• Charges concentrées/localisées : Les
charges extérieures sont concentrées en un
point le long de la poutre. Elles sont repré-
sentées par un torseur des actions méca-
niques appliquées à une section droite au
niveau du point d’application.

• Charges réparties : Les charges exté-
rieures sont réparties sur une portion ou
l’ensemble de la poutre. Elles sont repré-
sentées par une fonction de répartition le
long de la zone concernée.
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Rappel : actions mécaniques extérieures

Le torseur des actions mécaniques extérieures appliquées en un point B (charge
localisée), dans l’espace, s’écrit :

{τB}B,R =
{ −→

R
−−→
MB

}
R

=

{XB LB
YB MB
ZB NB

}
B,R

(2)

dans le repère R = (O, x⃗ , y⃗ , z⃗)

Dans le cas d’une modélisation 2D dans le plan (x⃗ , y⃗), ce torseur se réduit à :

{τB}B,R =

{XB −
YB −
− NB

}
B,R

(3)
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Rappel : actions mécaniques extérieures

Torseur des actions mécaniques

{τB}B,R =
{ −→

R
−−→
MB

}
R

=

{XB LB
YB MB
ZB NB

}
B,R

(4)

dans le repère R = (O, x⃗ , y⃗ , z⃗)

Nous souhaitons exprimer ce torseur en un autre point A :
• La résultante

−→
R reste inchangée quel que soit le point.

• En revanche, le moment doit être transporté du point B vers A selon la formule de
Varignon :

−−→
MA =

−−→
MB +

−−→
AB ∧

−→
R (5)
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Rappel : Principe fondamental de la statique (PFS)

Principe fondamental de la statique (PFS)

Un système est en équilibre statique lorsqu’il est immobile (pas en mouvement).
Dans ce cas, le principe fondamental de la statique (PFS) stipule que la somme
des forces extérieures et la somme des moments extérieurs au point O sont nulles.

T O =

 R⃗ = 0⃗

M⃗O = 0⃗
⇐⇒


∑

F⃗ext = 0⃗∑
M⃗O = 0⃗

(6)
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Rappel : Quelques liaisons mécaniques courantes
Encastrement Ponctuelle d’axe y⃗ Pivot d’axe z⃗

Exemple

Torseur des AM

{
X L
Y M
Z N

}
R

{
0 0
Y 0
0 0

}
R

{
X L
Y M
Z 0

}
R

Torseur cinématique

{
0 0
0 0
0 0

}
R

{
Ux Rx
0 Ry

Uz Rz

}
R

{
0 0
0 0
0 Rz

}
R

• Le torseur des actions mécaniques (AM) représente les efforts (forces et moments)
transmissibles par la liaison au point de contact avec le système.

• Le torseur cinématique décrit les degrés de liberté de la liaison : les composantes de
translation et de rotation autorisées.
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Torseur de cohésion – torseur de section
• Actions mécaniques intérieures : Les efforts inté-

rieurs d’une poutre sont des forces agissant à l’in-
térieur du matériau, garantissant l’équilibre ou la
cohésion de la structure sous l’effet des charges ex-
térieures appliquées.

• Pour déterminer les efforts internes d’une poutre, il
est nécessaire de réaliser une coupure fictive sur la
poutre (E) à l’aide d’un plan (π) perpendiculaire
à la ligne (fibre) moyenne de la section (S). La
poutre est ainsi divisée en deux parties, (E1) et
(E2), appelées « tronçons », au niveau du point
G, centre de surface de (S).

À retenir

• Le torseur de cohésion
représente l’action méca-
nique exercée par une por-
tion de la poutre sur une
autre, de part et d’autre
d’une coupure fictive.
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Torseur de cohésion – Torseur de section

Définition du torseur de cohésion

Les actions mécaniques exercées par le tronçon (E2) sur le tronçon (E1) à travers
la section droite fictive (π) d’un solide (S) correspondent aux efforts internes à la
poutre. Elles sont modélisées par le torseur de cohésion (ou torseur de section)
{τcoh}G,R, dont les éléments sont rapportés au point G , centre de la surface de
(π). Ce torseur est aussi noté {τint}G,R.

• Repère fixe : RO(O, x⃗ , y⃗ , z⃗), utilisé pour l’étude de l’équilibre statique de (S).
• Repère lié à la poutre : RA(A, x⃗ , y⃗ , z⃗), avec (A, x⃗) représentant l’axe tangent à la

ligne moyenne (ou fibre moyenne).
• Dans le cas traité ici, on a RA = RO .
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Torseur de cohésion – Torseur de section
Torseur de section sur le tronçon de gauche (E1),
appelé « amont »

• Bilan des actions mécaniques extérieures
(BAME) :
– Actions mécaniques extérieures agissant sur
(E1) : {τext→E1 }G,R
– Actions mécaniques intérieures exercées par le
tronçon (E2) sur (E1) : {τE2→E1 }G,R

• Principe fondamental de la statique (PFS) :

{τext→E1 }G,R + {τE2→E1 }G,R = 0⃗

Par convention :
{τint}G,R = {τE2→E1}G,R

Ainsi, le torseur de cohésion représentant les actions internes de (E2) sur
(E1) est donné par :

{τcoh}G,R = {τint}G,R = − {τext→E1 }G,R = −
{ −−−−−−−→

Rext→E1−−−−−−−→
Mext→E1

}
G,R

(7)
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Torseur de cohésion – Torseur de section
Torseur de section sur le tronçon de droite (E2),
appelé « aval »

• Bilan des actions mécaniques extérieures
(BAME) :
– Actions mécaniques extérieures agissant sur
(E2) : {τext→E2 }G,R
– Actions mécaniques intérieures exercées par le
tronçon (E1) sur (E2) : {τE1→E2 }G,R

• Principe fondamental de la statique (PFS) :

{τext→E2 }G,R + {τE1→E2 }G,R = 0⃗

Par convention :
{τint}G,R = − {τE1→E2}G,R

Ainsi, le torseur de cohésion représentant les actions internes du tronçon
(E1) sur (E2) est donné par :

{τcoh}G,R = {τint}G,R = {τext→E2 }G,R =
{ −−−−−−−→

Rext→E2−−−−−−−→
Mext→E2

}
G,R

(8)
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Torseur de cohésion – Torseur de section

Convention du torseur de cohésion

Le torseur de cohésion modélise l’action mécanique exercée par une portion (E2)
de la poutre sur une autre portion (E1), de part et d’autre d’une section fictive
(π). Il représente les actions internes de la poutre. Ce torseur est exprimé au
point G , centre de la section, dans le repère local R lié à la poutre.

{τcoh}G,R = {τint}G,R = − {τext→E1 }G,R = {τext→E2 }G,R (9)

Lors de l’analyse des actions internes dans une poutre, il est nécessaire d’effectuer une coupe
fictive chaque fois qu’une des situations suivantes se présente :
• discontinuité des efforts due à la présence d’actions mécaniques concentrées (efforts

ponctuels, moments, liaisons mécaniques comme pivots, rotules, appuis, etc.) ;
• discontinuité géométrique, notamment en cas de changement de direction de la ligne

moyenne.

Attention : l’amont n’est pas forcément à gauche, ni l’aval à droite. Cette convention
dépend uniquement du repère local (x⃗) de la poutre. Toujours bien poser le sens d’analyse
avant d’appliquer les conventions de signe !
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Sollicitations simples : Résultante

Effort normal N

L’effort interne agissant perpendiculairement
à une section droite de la poutre entraîne soit
un allongement (traction), soit un raccourcis-
sement (compression) de celle-ci.

{τcoh}G,R =

{Nx 0
0 0
0 0

}
G,R

(10) Pour :
• Nx > 0 : Traction
• Nx < 0 : Compression
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Sollicitations simples : Résultante

Efforts tranchants Ty et Tz

Les efforts internes agissant dans le plan d’une
section droite de la poutre provoquent un ci-
saillement relatif entre deux sections.

{τcoh}G,R =

{ 0 0
Ty 0
Tz 0

}
G,R

(11)
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Sollicitations simples : Moment

Moment de torsion Mtx

Un moment de torsion correspond à la somme
des moments de tous les efforts internes dans
la section, calculés par rapport à l’axe normal
de la fibre moyenne x⃗ .

{τcoh}G,R =

{0 Mtx
0 0
0 0

}
G,R

(12)
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Sollicitations simples : Moment

Moments fléchissants Mfy et Mfz

Un moment fléchissant est une composante
du moment résultant des actions mécaniques
qui engendrent la flexion longitudinale de la
poutre, contribuant ainsi à sa réduction.

{τcoh}G,R =

{0 0
0 Mfy
0 Mfz

}
G,R

(13)
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Torseur de cohésion (ou torseur de section)

Le torseur de cohésion est donc donné par :

{τcoh}G,R =


N Mtx
Ty Mfy
Tz Mfz


G,R

(14)

Avec :
• Nx : Effort normal selon l’axe (G , x⃗)
• Ty : Effort tranchant selon l’axe (G , y⃗)
• Tz : Effort tranchant selon l’axe (G , z⃗)
• Mtx : Moment de torsion selon l’axe (G , x⃗)
• Mfy : Moment fléchissant selon l’axe (G , y⃗)
• Mfz : Moment fléchissant selon l’axe (G , z⃗)
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Torseur de cohésion – torseur de section

Exercice 1 — Détermination de l’effort normal N

Objectif : déterminer le torseur de cohésion associé à une sollicitation en traction.

• Déterminer le torseur de cohésion sur le tronçon gauche (partie amont).
• Déterminer le torseur de cohésion sur le tronçon droit (partie aval).

Données géométriques :
• A⃗B = L x⃗ : longueur de la poutre.
• A⃗G = x x⃗ : G est le point de section fictive sur la fibre moyenne.
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Torseur de cohésion – Exercice 1 : tronçon amont (E1)

1) Équilibre des efforts (résultante)

Application du PFS à E1 :

{τext→E1 } + {τint} = 0⃗ ⇒ R⃗ext→E1 + R⃗int = 0⃗

Résolution : (−F
0
0

)
+

(N
Ty
Tz

)
=

(0
0
0

)
⇒


N = F
Ty = 0
Tz = 0

Interprétation : L’effort de traction F est totalement équilibré par la cohésion interne.
Aucun effort tranchant.
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Torseur de cohésion – Exercice 1 : tronçon amont (E1)

2) Équilibre des moments au point G

M⃗ext→E1 (G) + M⃗int = 0⃗

Transport du moment de A à G :

M⃗ext→E1 (G) = M⃗(A)︸ ︷︷ ︸
= 0

+ G⃗A ∧ R⃗ext→E1︸ ︷︷ ︸(−x
0
0

)
∧

(−F
0
0

)
=⃗0

= 0⃗

Résolution :

M⃗int = 0⃗ ⇒


Mtx = 0
Mfy = 0
Mfz = 0

Conclusion : Aucun moment interne ne se développe, la poutre est uniquement sollicitée
en traction axiale.
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Torseur de cohésion – Exercice 1 : tronçon aval (E2)

1) Équilibre des efforts (résultante)

Application du PFS à E2 :

{τext→E2 } + {τE1→E2 } = 0⃗ ⇒ {τext→E2 } − {τint} = 0⃗

Résolution :

R⃗ext→E2 − R⃗int = 0⃗ ⇒

(F
0
0

)
−

(N
Ty
Tz

)
=

(0
0
0

)
⇒


N = F
Ty = 0
Tz = 0

Interprétation : L’effort de traction est équilibré de façon identique par la cohésion
interne. Aucune composante tranchante.
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Torseur de cohésion – Exercice 1 : tronçon aval (E2)

2) Équilibre des moments au point G

M⃗ext→E2 (G) − M⃗int = 0⃗ ⇒ M⃗int = M⃗ext→E2 (G)

Calcul du moment transporté au point G :

M⃗ext→E2 (G) = G⃗B ∧ R⃗ext→E2 =

(L − x
0
0

)
∧

(F
0
0

)
= 0⃗

Conclusion :

M⃗int = 0⃗ ⇒


Mtx = 0
Mfy = 0
Mfz = 0

Aucun moment interne ne se développe sur le tronçon aval.
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Torseur de cohésion – torseur de section

Exercice 1 — Synthèse

Pour le système soumis à une force axiale F , le torseur de cohésion
au point G dans le repère R est donné par :

{τcoh}G,R =


F 0
0 0
0 0


G,R

• L’effort normal N est positif, ce qui signifie que la poutre est sol-
licitée en traction.

• Le torseur obtenu est identique que l’on considère la partie amont
ou la partie aval.
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Torseur de cohésion – Exercice 2 : effort normal N

Objectifs :
• Déterminer le torseur de cohésion sur l’échantillon de gauche (partie

amont).
• Déterminer le torseur de cohésion sur l’échantillon de droite (partie

aval).

Données géométriques :
• A⃗B = Lx⃗ : longueur totale de la poutre.
• A⃗G = xx⃗ : point G au niveau de la section de coupe fictive.
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Exercice 2 – Équilibre du tronçon amont (E1)

1) Résultante des actions mécaniques

Application du PFS à E1 :
{τext→E1 } + {τint} = 0⃗

Résolution :

R⃗ext→E1 + R⃗int = 0⃗ ⇒

(F
0
0

)
+

(N
Ty
Tz

)
= 0⃗ ⇒


N = −F
Ty = 0
Tz = 0

Conclusion : L’échantillon gauche est en compression (N < 0).
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Exercice 2 – Moment au point G (tronçon amont)

Équilibre des moments en G :

M⃗ext→E1 (A) + G⃗A ∧ R⃗ext→E1 (A) + M⃗int = 0⃗

Calcul :

G⃗A =

(−x
0
0

)
, R⃗ext =

(F
0
0

)
⇒ G⃗A ∧ R⃗ext = 0⃗

⇒ M⃗int = 0⃗ ⇒


Mtx = 0
Mfy = 0
Mfz = 0

Conclusion : Aucun moment interne ne se développe sur E1.
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Exercice 2 – Équilibre du tronçon aval (E2)

PFS appliqué à E2 :
{τext→E2 } − {τint} = 0⃗

Résultante des forces :(−F
0
0

)
−

(N
Ty
Tz

)
= 0⃗ ⇒


N = −F
Ty = 0
Tz = 0

Moment en G :

G⃗B =

(L − x
0
0

)
, R⃗ext =

(−F
0
0

)
⇒ G⃗B ∧ R⃗ext = 0⃗

⇒ M⃗int = 0⃗

Conclusion : Même torseur de cohésion qu’en amont.
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Synthèse – Torseur de cohésion (Exercice 2)

{τcoh}G,R =


−F 0
0 0
0 0


G,R

• L’effort normal N = −F indique que la poutre est en compres-
sion.

• Aucun effort tranchant ni moment interne : effort normal pur.
• Le résultat est identique sur les deux tronçons (amont et aval).
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Torseur de cohésion – Exercice 3 : effort tranchant Ty

Objectifs :
• Déterminer le torseur de cohésion sur les deux parties de la poutre.

Données :
• A⃗B = Lx⃗ : longueur totale de la poutre.
• A⃗G = xx⃗ : coupe fictive au point G .
• Action extérieure : force verticale F⃗ appliquée en B.
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Exercice 3 – Bilan des actions mécaniques extérieures
(BAME)

Principe fondamental de la statique (PFS global) :∑
Fx = 0 ⇒ XA = 0∑

Fy = 0 ⇒ YA − F = 0 ⇒ YA = F∑
MA = 0 ⇒ MA − F · L = 0 ⇒ MA = FL

Conclusion : Les efforts d’appui sont connus. On peut maintenant analyser les
efforts intérieurs via une coupe fictive.
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Exercice 3 – Équilibre du tronçon amont (E1)

1) Résultante des forces – PFS :

{τext→E1 } + {τint} = 0⃗ ⇒ R⃗ext + R⃗int = 0⃗

(0
F
0

)
+

(N
Ty
Tz

)
= 0⃗ ⇒


N = 0
Ty = −F
Tz = 0

Conclusion : La poutre est soumise à un cisaillement vertical Ty = −F .
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Exercice 3 – Moment au point G (tronçon amont)

Équilibre des moments :
M⃗ext(G) + M⃗int = 0⃗

M⃗A =

( 0
0

FL

)
, G⃗A =

(−x
0
0

)
, R⃗A =

(0
F
0

)

G⃗A ∧ R⃗A =

( 0
0

−xF

)
⇒ M⃗ext(G) =

( 0
0

FL − xF

)
=

( 0
0

F (L − x)

)

M⃗int =

( 0
0

−F (L − x)

)

Conclusion : Moment fléchissant Mf = −F (L − x)
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Exercice 3 – Équilibre du tronçon aval (E2)

2) Résultante des forces – PFS :

{τext→E2 } − {τint} = 0⃗ ⇒ R⃗ext − R⃗int = 0⃗

( 0
−F
0

)
−

(N
Ty
Tz

)
= 0⃗ ⇒


N = 0
Ty = −F
Tz = 0

Même effort tranchant que pour E1.
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Exercice 3 – Moment au point G (tronçon aval)

M⃗ext(B) + G⃗B ∧ R⃗ext(B) − M⃗int = 0⃗

G⃗B =

(L − x
0
0

)
, R⃗ext(B) =

( 0
−F
0

)
⇒ G⃗B ∧ R⃗ext =

( 0
0

−(L − x)F

)

M⃗int =

(Mtx
Mfy
Mfz

)
=

( 0
0

−(L − x)F

)

Conclusion : Moment fléchissant Mf = −(L − x)F
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Synthèse – Torseur de cohésion (Exercice 3)

Torseur de cohésion au point G :

{τcoh}G,R =


0 0

−F 0
0 Mf


G,R

avec Mf =
{

−F (L − x) (amont)
−(L − x)F (aval)

• Effort tranchant constant Ty = −F
• Moment fléchissant variable selon x
• Même torseur quelle que soit la coupe
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Diagrammes des sollicitations

Diagrammes des sollicitations

Pour chaque sollicitation — effort normal N, efforts tranchants Ty , Tz ,
moment de torsion Mtx , moments fléchissants Mfy , Mfz — il est possible de
tracer un diagramme montrant l’évolution de sa valeur le long de la poutre
(en fonction de la position x).

Ces valeurs sont tracées avec leur signe algébrique, selon les conventions
choisies, ce qui permet de visualiser les zones soumises à compression, trac-
tion, cisaillement ou flexion.

Les diagrammes de sollicitations traduisent donc graphiquement les com-
posantes du torseur de cohésion déterminé par les équilibres statiques, et
mettent en évidence les zones de sollicitation maximale.
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Diagrammes des sollicitations - exercices

Exercice 1 - diagramme de sollicitation
Effort normal N

(Traction : N > 0 )

Exercice 2- diagramme de sollicitation
Effort normal N

(Compression : N < 0 )

Exercice 3- diagrammes de sollicitation
Effort tranchant Ty

Moment fléchissant Mfz
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Synthèse — Torseur de cohésion (ou torseur de section)

Définition
Le torseur de cohésion modélise l’action
mécanique interne exercée par une portion
(E2) sur (E1), séparées par une section fictive
(π).
Exprimé au point G, centre de la section,
dans le repère local R = (x⃗ , y⃗ , z⃗).

{τcoh}G,R = {τint} = −
{

τext→E1

}
=
{

τext→E2

}
Coupure fictive : nécessaire en cas de

discontinuité d’efforts (forces/moments
concentrés, appuis)
discontinuité géométrique (changement
de direction)

Section amont/aval : selon axe x⃗ du repère
local.
Attention : l’amont n’est pas forcément à
gauche !

Forme générale

{τcoh}G,R =

{
Nx Mtx
Ty Mfz
Tz Mfy

}
Nx : effort normal
(traction/compression)
Ty , Tz : efforts tranchants
(cisaillement)
Mtx : moment de torsion
Mfz , Mfy : moments fléchissants
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Chapitre 3

Contraintes mécaniques
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PLAN
Chapitre 3

Objectifs :
• Déterminer les contraintes mécaniques dans une struc-

ture.

Pré-requis :
• Notion de vecteur force
• Loi d’action-réaction (Newton III)
• Bases de la statique des solides

Contenu :
• Vecteur contrainte
• Tenseur des contraintes mécaniques
• Contraintes principales
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Vecteur contrainte

On considère un point M(x , y , z) arbitraire appartenant au solide
étudié, dans un repère orthonormé (O, x⃗ , y⃗ , z⃗). On examine une
surface infinitésimale dS qui contient le point M. Cette surface
est caractérisée par sa direction normale n⃗ (c’est-à-dire la direction
perpendiculaire), qui détermine son orientation, de la manière sui-
vante :

n⃗ = β1 x⃗ + β2 y⃗ + β3 z⃗

La normale extérieure n⃗ divise l’espace en deux demi-espaces, de part et d’autre de la
facette. Selon le principe d’équilibre des actions mécaniques (troisième loi de Newton
ou loi d’action-réaction), les efforts mécaniques exercés sur la facette inférieure d⃗f sont
égaux en valeur absolue et opposés en signe à ceux exercés sur la facette supérieure. On
peut ainsi définir un vecteur de contrainte

−→
T (M, n⃗) au point M, associé à la normale n⃗

tel que :

−→
T (M, n⃗) =

−→
df
dS

© Djibrilla NOMA (UCB Lyon 1) Dimensionnement des structures (DDS) - S2 61 / 125



Vecteur contrainte

Décomposition

Le vecteur contrainte se décompose en :
−→
T (M, n⃗) = σnn⃗ + σt t⃗

où :
• σn : composante normale (le long de n⃗)
• σt : composante tangentielle (dans le plan de dS)
Ces composantes dépendent du point M et de l’orientation de la surface. Leur unité est
le Pascal (Pa), soit N/m2.
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Théorème de Cauchy

Théorème de Cauchy

Pour généraliser les contraintes en tout point, on introduit
le textbftenseur des contraintes ou tenseur de Cauchy ¯̄σ, qui
est indépendant de l’orientation de la facette considérée. Ce
tenseur est défini en un point M quelconque par :

¯̄σ =

[
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

]
M,R

Le théorème de Cauchy énonce que :
En tout point M et en chaque instant t, la dépendance du
vecteur contrainte

−→
T (x⃗ , t, n⃗) à la normale n⃗ est linéaire.

−→
T (M, n⃗) = ¯̄σ · −→n avec −→n =

[
x⃗
y⃗
z⃗

]
R

Tenseur des contraintes sur un
cube élementaire au voisinage
d’un point M (M appartenant

au solide étudié).
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Tenseur des contraintes – Cas général

Expression dans une base quelconque

Dans une base quelconque (e⃗1, e⃗2, e⃗3), le tenseur des contraintes s’écrit :

¯̄σ =

[
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

]
M,(e⃗1,e⃗2,e⃗3)

Chaque composante σij indique une contrainte agissant dans la direction i sur une surface
de normale orientée selon j.
Dans le cas général, le vecteur contrainte s’écrit :

−→
T (M, n⃗) = ¯̄σ · −→n =

[
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

]
M,(e⃗1,e⃗2,e⃗3)

·

[
e⃗1
e⃗2
e⃗3

]
(e⃗1,e⃗2,e⃗3)

Remarque : le tenseur est symétrique ce qui implique que les termes non-diagonaux
sont égaux ⇒ σij = σji .
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Contraintes principales

Définition
Il est possible de trouver une base dans laquelle le tenseur des contraintes devient dia-
gonal. Les composantes dans cette base sont appelées contraintes principales :

¯̄σ =

[
σI 0 0
0 σII 0
0 0 σIII

]
M,(e⃗I ,e⃗II ,e⃗III )

(15)

• e⃗I , e⃗II , e⃗III : directions principales.
• Par convention : σI > σII > σIII .
• Dans cette base, les contraintes tangentielles sont nulles.
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Contraintes mécaniques

Définition générale

Les contraintes mécaniques représentent les efforts internes
exercés sur une surface élémentaire dS dans un solide.
Dans un repère (O, x⃗ , y⃗ , z⃗), elles se décomposent en :
• Contraintes normales : σxx , σyy , σzz
• Contraintes tangentielles : τxy , τxz , τyz (et leurs symé-

triques)
Tenseur associé :

¯̄σ =

[
σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

]
(16)

Unités : souvent exprimées en MPa.

Tenseur des contraintes sur un
cube élémentaire au voisinage
d’un point M (M appartenant

au solide étudié)
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Contraintes mécaniques – Cas des poutres

Hypothèse poutre

Pour une poutre allongée selon x⃗ , les seules contraintes significatives sont :

−→
T (M, n⃗) =

[
σxx
τxy
τxz

]
(17)

Avec :
• σxx : contrainte normale dans la direction longitudinale
• τxy et τxz : contraintes tangentielles dans la section droite
• Si τxy = τxz = 0, alors x⃗ est une direction principale
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Contraintes mécaniques et torseur de cohésion

Relation entre contraintes mécaniques et torseur de cohésion

Les contraintes mécaniques sont étroitement liées au torseur de cohésion (ou aux
actions mécaniques internes). Cette relation est exprimée par :

{τcoh}G,R =


−→
R =

∫∫
(S)

−→
T (M, n⃗).dS

−−→
M =

∫∫
(S)

−−−→
GM ∧

−→
T (M, n⃗).dS


G,R

avec
−−−→
GM =

{0
y
z

}
R

En théorie des poutres, on a :

{τcoh}G,R =


Nx Mtx

Ty Mfy

Tz Mfz


G,R

=



∫∫
(S) σxx .dS

∫∫
(S) (y .τxz − z.τxy ).dS∫∫

(S) τxy .dS
∫∫

(S) z σxx .dS∫∫
(S) τxz .dS −

∫∫
(S) y σxx .dS


G,R

(18)
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Contraintes mécaniques
Dans ce module, nous nous concentrerons uniquement sur les contraintes associées à un effort
normal (contraintes normales σxx ) et au cisaillement/effort tranchant (contraintes tangentielles
τxy subis par une poutre.

Contraintes normales lié à un effort normal

Un solide soumis à un effort normal Nx subit une contrainte normale σxx donnée par :

σxx =
Nx

S
(19)

avec S la surface de la section droite.

Contraintes tangentielles lié à un effort tranchant

Un solide soumis à un effort tranchant Ty (respectivement Tz) subit une
contrainte tangentielle τxy (respectivement τxz) donnée par :

τxy = Ty

S

(
respectivement τxz = Tz

S

)
(20)

avec S la surface de la section droite.
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Concentration de contrainte

Concentration de contrainte

• Elle apparaît lorsqu’on a une discontinuité de
la pièce avec une modification géométrique
(changement de section ou trou par exemple)
ou près d’une charge concentrée (principe de
Saint-Venant).

• Elle a pour conséquence d’entraîner localement
une augmentation des contraintes. Il est
important d’en tenir compte en DDS car c’est
souvent la zone qui risque de céder en premier
sous l’effet des charges extérieures.

• Pour en tenir compte, on multiplie les
contraintes par un coefficient de concentra-
tion Kt propre à chaque type de sollicitation.

Concentration de contrainte au niveau
de la zone en bleu.

La contrainte normale en traction au

point B est donnée par :

σxx = Kttraction · N
S
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Chapitre 4

Traction/compression - Effort normal
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PLAN
Chapitre 4

Objectifs :
• Dimensionner un problème de traction/compression.

• Résoudre un problème de treillis (assemblage de barres).

Pré-requis :
• Principe fondamental de la statique (PFS)

Contenu :
• Caractéristiques de sollicitation en trac-

tion/compression
• Définition d’un treillis
• Méthode de Ritter (méthode des sections)
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Traction-Compression
Définition

La traction (ou la compression) est une sollicitation mé-
canique provoquant l’allongement ou le raccourcissement
d’un solide le long de sa direction longitudinale (générale-
ment selon l’axe x⃗). Elle résulte de deux forces opposées,
de même direction et de même intensité, appliquées aux
extrémités du solide. Le torseur des actions mécaniques au
point G, dans le repère R, s’écrit :

{τcoh}G,R =

{
Nx 0
0 0
0 0

}
G,R

Contrainte mécanique

En traction/compression, un corps (E) soumis à un effort
normal Nx ne subit qu’une contrainte normale σxx donnée
par :

σxx =
Nx

S
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Essai de traction
Essai de traction

L’essai de traction consiste à soumettre une éprouvette nor-
malisée à un effort de traction croissant. Il permet d’analyser
le comportement mécanique du matériau à travers :
• le domaine élastique : raideur (module de Young), limite

d’élasticité,
• le domaine plastique : allongement, déformation perma-

nente,
• la rupture : contrainte maximale, allongement à rupture.

© ZwickRoell
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Déformation - essai de traction

Pour un corps de section circulaire :
Avant chargement Après chargement
L0 : longueur initial L = L0 + ∆L : longueur après chargement
d0 : diamètre initial d = d0 − ∆d : diamètre après chargement

avec ∆L et ∆d respectivement les variations de longueur et
de diamètre.

Déformation

Une déformation mécanique est une modification géométrique d’un corps sous
l’effet d’une contrainte mécanique. On peut définir deux déformations :
• Déformation longitudinale :

εL = ∆L
L0

(21)

• Déformation transversale :
εT = ∆d

d0
(22)

Les déformations sont des grandeurs adimensionnelles (sans unité). .
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Déformation - déplacement

Relation entre déformation et déplacement

La déformation longitudinale moyenne est définie par :

εL = ∆L
L0

où ∆L est l’allongement de la poutre de longueur initiale L0.

Localement, si u(x) est le déplacement longitudinal d’un point situé à l’abscisse
x , alors la déformation locale est donnée par :

ε(x) = du
dx

En cas de déformation homogène, on a : ε(x) = εL.
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Courbe de traction
Domaine élastique et plastique

La courbe σ = f (εL) présente deux grands domaines :
• Domaine élastique (σ < Re = σE ) : les déforma-

tions sont réversibles (retour à la forme initiale après
déchargement).

• Domaine plastique (σ > Re = σE ) : les déforma-
tions deviennent irréversibles.

Résistance maximale, striction et rupture

Dans la zone plastique :
• La contrainte augmente jusqu’à une valeur maxi-

male : la résistance maximale σm ou Rm.
• Ensuite, débute la striction : une réduction localisée

de la section.
• Le matériau finit par rompre. L’allongement total au

moment de la rupture est noté A (allongement à la
rupture).

avec :
σE : limite élastique

σm : contrainte maximale
A : allongement à la rupture
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Déformation — Domaine élastique

Lors d’un essai de traction, le matériau se comporte d’abord de ma-
nière élastique : les déformations sont réversibles et disparaissent
à l’arrêt de la sollicitation.

Caractéristiques du domaine élastique

• Le domaine élastique est limité par la contrainte σE , au-delà de laquelle la déformation
devient irréversible.

• Dans la pratique, une limite conventionnelle à 0.2 % de déformation plastique est
souvent utilisée : σ0,2.

• La relation entre contrainte et déformation est linéaire, appelée loi de comportement.
Elle est donnée par la loi de Hooke :

σ = E · εL

où E est le module de Young, caractéristique de la rigidité du matériau (en GPa).
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Déformation — Effets transversaux

Coefficient de Poisson
• Lors d’un essai de traction, la poutre s’allonge dans la direction longitudinale, mais sa

section transversale se réduit. Ce phénomène est lié à la nature du matériau et à son
comportement mécanique.

• Cette contraction transversale est reliée à l’allongement longitudinal par le coefficient
de Poisson ν, défini par :

ν = −
εT
εL

où :
εL : déformation longitudinale,
εT : déformation transversale (négative en traction).

• La valeur de ν varie typiquement entre 0 et 0.5 :
Aciers : ν ≈ 0.28 à 0.30
Aluminium : ν ≈ 0.34
Matériau incompressible (idéal) : ν = 0.5
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Traction/Compression : dimensionnement

Critère de dimensionnement
Lors du dimensionnement d’une pièce soumise à un ef-
fort de traction ou de compression, il faut vérifier que la
contrainte σ supportée par la pièce est inférieure à la li-
mite d’élasticité σE (ou résistance élastique Re) :

σ ≤ σE = Re (23)

En pratique, un coefficient de sécurité s ≥ 1 est utilisé
pour prendre en compte les incertitudes liées au matériau,
à la géométrie, aux conditions d’appui, et aux charges
appliquées. Le critère de dimensionnement devient alors :

σ ≤
σE
s

= Rpe (24)

avec Rpe = σE
s , la résistance pratique élastique.
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Traction/compression : concentration de contrainte

Concentration de contrainte

La contrainte nominale σnom = N
S correspond à la contrainte moyenne sur la section.

En présence de discontinuités (trous, changements de section, etc.), il y a un risque
accru d’amorçage de fissure. La contrainte locale est amplifiée par un coefficient de
concentration Kt :

σmax = Kt · σnom

Pour assurer la sécurité, le critère de dimensionnement devient :

σmax ≤
σE
s

= Rpe

où σE est la limite élastique et s le coefficient de sécurité.
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Traction/compression : exercice

Dans cet exercice, on se propose de déterminer les actions mécaniques intérieures
et de vérifier le dimensionnement. Nous allons procéder en trois étapes :

1. Contrainte dans le tronçon ]AB[
2. Contrainte dans le tronçon ]BC[
3. Contrainte au point B (concentration de contrainte)

Les données du problème sont :
• Grand diamètre : D=8 mm
• Petit diamètre : d=6 mm
• Rayon du congé : r=0.6 mm
• Force : F= 500 N
• Limite élastique : Re=30 MPa
• Coefficient de sécurité : s=1.2
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Traction/compression : exercice

1. Contrainte dans le tronçon ]AB[ :
• On commence par déterminer le torseur de cohésion sur le tronçon ]AB[ :

{τcoh}G,R = −{τext→E1}G,R = −{τA}G,R =

F 0
0 0
0 0


G,R

=

500 0
0 0
0 0


G,R

• On détermine la contrainte normale sur le tronçon ]AB[ :

σxx = N
SAB

= F
π D2

4
= 9.946 MPa

• On vérifie le critère de dimensionnement :

σxx = 9.946 MPa <
σE
s = 30

1.2 = 25 MPa

Ce tronçon est donc bien dimensionné.
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Traction/compression : exercice

2. Contrainte dans le tronçon ]BC[ :
• On commence par déterminer le torseur de cohésion sur le tronçon ]BC[ :

{τcoh}G,R = {τext→E2}G,R = {τC }G,R =

F 0
0 0
0 0


G,R

=

500 0
0 0
0 0


G,R

• On détermine la contrainte normale sur le tronçon ]BC[ :

σxx = N
SBC

= F
π d2

4
= 17.686 MPa

• On vérifie le critère de dimensionnement :

σxx = 17.686 MPa <
σE
s = 30

1.2 = 25 MPa

Ce tronçon est donc bien dimensionné.
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Traction/compression : exercice

3. Contrainte au point B (concentration de contrainte) :
• On commence par la contrainte normale au point B. On considérera la

section d car la contrainte y est maximale :

σxx = N
SBC

= F
π d2

4
= 17.686 MPa

• On détermine le coefficient de concentration K :
D
d = 8

6 = 1.33 et r
d = 0.6

6 = 0.1 ⇒ K ∼ 1.38
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Traction/compression : exercice

3. Contrainte au point B (concentration de contrainte) :

K ∼ 1.38

• On vérifie le critère de dimensionnement :

K · σxx = 1.38 × 17.686 = 24.406 MPa <
σE
s = 30

1.2 = 25 MPa

La structure est donc bien dimensionnée.
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Traction/compression : exercice

Remarques finales :
• La pièce est correctement dimensionnée vis-à-vis des critères de

résistance.
• On observe que la contrainte augmente quand la section diminue

(σBC > σAB).
• Le point B, au niveau du changement de section, est le point

critique à cause de la concentration de contrainte. C’est là que la
contrainte maximale apparaît.
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Traction/compression : vérifier le dimensionnement

Méthodologie

Face à un problème en traction/compression, la démarche à employer pour vérifier le
dimensionnement est la suivante :
• Réaliser le bilan des actions mécaniques extérieures (BAME).

• Appliquer le principe fondamental de la statique (PFS) pour déterminer les inconnues
de liaison.

• Déterminer le torseur de cohésion. Attention : effectuer autant de coupes fictives que
nécessaire (ex : changement de direction, liaisons, efforts ponctuels...).

• Identifier le point le plus sollicité (point critique) à l’aide des diagrammes de sollicita-
tions.

• Vérifier le critère de dimensionnement :

σ ≤
σE
s

= Rpe

(penser à intégrer un éventuel coefficient de concentration Kt)
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Traction/compression : déterminer les dimensions

Méthodologie

Face à un problème en traction/compression, la démarche à employer pour déterminer
les dimensions d’une structure est la suivante :
• Réaliser le bilan des actions mécaniques extérieures (BAME).
• Appliquer le principe fondamental de la statique (PFS) pour déterminer les inconnues

de liaison.
• Déterminer le torseur de cohésion. Attention : effectuer autant de coupes fictives que

nécessaire (ex : changement de direction, liaisons, efforts ponctuels...).
• Identifier le point le plus sollicité (point critique).
• Utiliser le critère de dimensionnement pour exprimer une contrainte maximale admis-

sible, puis calculer les dimensions nécessaires.

Exemple : pour une section circulaire de diamètre D, on obtient :

σ ≤
σE
s

= Rpe ⇒
N
S

≤ Rpe ⇒
N

π D2
4

≤ Rpe

D’où la condition minimale sur le diamètre :

D ≥

√
4 · N

π · Rpe
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Compression : le cas du flambement
Flambement

Une structure en compression a tendance à se rac-
courcir. Toutefois, au-delà d’une certaine valeur
de charge, dite charge critique, la structure peut
se déformer latéralement de manière instable : on
parle de flambement.
La charge critique de flambement est donnée par
la formule d’Euler :

Fcr = π2 · E · I
L2

k

avec :
• Fcr : charge critique de flambement (N)
• E : module de Young (Pa)
• I : moment d’inertie de la section (m4)
• Lk : longueur équivalente entre deux points d’in-

flexion (m)
Cette formule s’applique à des colonnes élancées
avec des conditions d’appui bien définies.

Flambement d’un pont © Esprit Génie
Civil
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Statisme des systèmes mécaniques

Cadre d’analyse

Le Principe Fondamental de la Statique (PFS) permet d’établir les conditions d’équilibre
d’un système mécanique indéformable.
Il conduit aux équations suivantes :
• En 2D (plan), on dispose de 3 équations d’équilibre :∑

Fx = 0∑
Fy = 0∑
M = 0

• En 3D (espace), on dispose de 6 équations d’équilibre :∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0∑

Mx = 0,
∑

My = 0,
∑

Mz = 0
• Ces équations permettent de déterminer, au maximum :

3 inconnues de liaison indépendantes en 2D
6 inconnues de liaison indépendantes en 3D

Avant toute résolution, il est essentiel de :
établir le bilan des inconnues de liaison
comparer avec le nombre d’équations disponibles

Objectif : identifier si le système est isostatique, hypostatique ou hyperstatique.
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Statisme des systèmes mécaniques

Degré d’hyperstatisme

Le degré d’hyperstatisme permet de déterminer si un système mécanique peut être résolu
uniquement à l’aide du Principe Fondamental de la Statique (PFS).
On utilise la relation :

h = Ni − Ne

avec :
• Ni : nombre d’inconnues de liaison (réactions),
• Ne : nombre d’équations d’équilibre indépendantes (3 en 2D, 6 en 3D),
• h : degré d’hyperstatisme.
Trois cas peuvent se présenter :
• h < 0 : Système hypostatique — système mobile, instable ou insuffisamment

contraint.
• h = 0 : Système isostatique — les équations d’équilibre suffisent à déterminer les

inconnues.
• h > 0 : Système hyperstatique — la résolution nécessite des équations supplémen-

taires (lois de comportement, compatibilité des déformations, etc.).
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Avantages des structures hyperstatiques

Intérêt des structures hyperstatiques

Une structure hyperstatique est une structure dont l’équilibre ne peut pas être déterminé
uniquement par le principe fondamental de la statique. Elle présente plusieurs avantages
mécaniques et structurels :
• Meilleure répartition des efforts : les charges sont réparties sur plusieurs éléments

porteurs.
• Répartition plus uniforme des contraintes : diminution des concentrations de

contraintes locales.
• Rigidité accrue : flèches et déformations plus faibles sous chargement.
• Sécurité améliorée : présence de redondances permettant une reprise des efforts en

cas de défaillance locale.
• Meilleur comportement aux actions dynamiques (vent, séisme, charges mobiles).
• Durabilité et confort d’usage : réduction de la fatigue, des vibrations et des dégrada-

tions.
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Hyperstatisme : exercice
On considère une poutre bi-encastrée soumise à une force ponctuelle horizontale.

Poutre encastrée en A et C. Une force horizontale −F est appliquée en un point B avec AB = a,
BC = b, donc L = a + b.
Travail demandé :

1. Réaliser une schématisation complète du système avec les liaisons et la force appliquée.
2. Appliquer le principe fondamental de la statique (PFS) pour écrire les équations

d’équilibre.
3. Calculer :

le nombre d’inconnues de liaison Ni ,
le nombre d’équations disponibles Ne ,
le degré d’hyperstatisme h = Ni − Ne .

4. Suggestion : proposer un moyen de rendre le système isostatique (ex : transformation
d’une liaison ou suppression d’une réaction).
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Hyperstatisme : exercice – solution (1/2)
Considérons la poutre bi-encastrée avec une force ponctuelle −F appliquée en B.

Poutre encastrée en A et C, longueur totale L = a + b.

1. Schématisation :
Encastrement en A : 3 réactions inconnues Xa, Ya, Ma

Encastrement en C : 3 réactions inconnues Xc , Yc , Mc

Force externe −F appliquée au point B, direction −x

2. Application du principe fondamental de la statique (PFS) :
En 2D, on dispose de 3 équations d’équilibre :∑

Fx = 0,
∑

Fy = 0,
∑

M = 0
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Hyperstatisme : exercice – solution (2/2)

3. Calcul du degré d’hyperstatisme :

Ni = 6 (réactions inconnues : Xa, Ya, Ma, Xc , Yc , Mc)
Ne = 3 (équations d’équilibre en 2D)

h = Ni − Ne = 6 − 3 = 3

4. Conclusion :
Le système est hyperstatique de degré 3.
Les équations d’équilibre seules ne suffisent pas pour déterminer toutes les
réactions.
Il faut ajouter des équations supplémentaires basées sur la compatibilité des
déformations et les lois de comportement des matériaux.

5. Suggestion :
Pour rendre le système isostatique (résoluble uniquement par PFS), on peut remplacer
l’un des encastrements par une liaison plus simple (ex. appui simple) réduisant ainsi le
nombre d’inconnues.
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Hyperstatisme : exercice – résolution (1/2)

Hypothèses :
• Encastrements en A et C : déplacements verticaux et rotations nuls,

ωA = 0, ω′
A = 0, ωC = 0, ω′

C = 0

où ω(x) est la flèche (déplacement vertical), et ω(x)′ = dw
dx la rotation (pente de la poutre).

• Réactions inconnues : Xa, Ya, Ma, Xc , Yc , Mc .

Étape 1 : Équilibre statique
Appliquer le principe fondamental de la statique (PFS) pour écrire les équations d’équilibre :∑

Fx = 0,
∑

Fy = 0,
∑

M = 0

Étape 2 : Relation moment–courbure
La flexion engendre une courbure ω′′(x) liée au moment fléchissant :

ω′′(x) =
d2ω

dx2 = −
M(x)

EI
On exprime les déplacements verticaux et rotations en A et C en fonction des moments Ma, Mc .
Remarque : cette méthode repose sur des notions de flexion vues au semestre 3.
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Hyperstatisme : exercice – résolution (2/2)

Étape 3 : Conditions de compatibilité
Les appuis étant encastrés, les déplacements et rotations en A et C doivent être nuls :

ωA = 0, ω′
A = 0, ωC = 0, ω′

C = 0

Ces conditions apportent 4 équations supplémentaires.
Étape 4 : Résolution
On résout le système de 6 équations à 6 inconnues (Xa, Ya, Ma, Xc , Yc , Mc).
Résultats typiques :

Ma =
Fb2a

L2 , Mc =
Fa2b

L2

Ya =
Fb
L

, Yc =
Fa
L

Les réactions horizontales Xa, Xc sont déterminées par l’équilibre horizontal.
Conclusion :
La combinaison des équations d’équilibre et des conditions de compatibilité permet de résoudre
ce problème hyperstatique.
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Treillis

Définition

Un treillis (ou structure à barres) est une structure compo-
sée de barres rectilignes assemblées de manière triangulée,
reposant sur les hypothèses suivantes :
• Les barres sont modélisées par leurs lignes médianes, si-

tuées dans un même plan, et se rejoignent en des points
appelés nœuds.

• Chaque nœud est modélisé comme une rotule idéale
(sans frottement), permettant uniquement des rotations.

• Les efforts extérieurs sont appliqués exclusivement aux
nœuds (jamais directement sur les barres). Cela permet
d’éviter que les barres soient sollicitées en flexion.

• Chaque barre est soumise à un effort axial (ou effort nor-
mal) : une force de traction ou de compression appliquée
aux extrémités.

• Le poids propre des barres est considéré comme négli-
geable.

Pont en treillis © Eugenio
Merzagora

Un treillis peut être isostatique ou

hyperstatique.
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Treillis

Degré d’hyperstatisme

Le degré d’hyperstatisme d’un treillis plan peut être déterminé par la formule suivante :

h = b + r − 2n

avec h représente le degré d’hyperstaticité, b le nombre de barres, r le nombre de réactions
d’appui et n le nombre de nœuds.
Un treillis est :
• isostatique si h = 0,
• hyperstatique si h > 0,
• hypostatique si h < 0 (structure instable ou mal modélisée).

Exercice : Déterminer le degré d’hyperstatisme du treillis ci-dessous.
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Treillis : généralités et méthodes de résolution

Structures en treillis
Les treillis sont des structures largement utilisées dans
de nombreux domaines industriels, notamment dans la
construction, le génie civil et l’aéronautique (ex. : ponts,
charpentes, fuselages d’avion).
Leur principal intérêt réside dans leur capacité à former
des structures légères et rigides, capables de résister ef-
ficacement aux efforts extérieurs, en particulier aux charges
axiales (traction / compression).
Méthodes d’analyse des treillis :
• Méthode graphique de Cremona.
• Méthode des nœuds.
• Méthode des sections (ou méthode de Ritter).
Dans ce cours, nous privilégierons la méthode des sections
de Ritter, qui permet de déterminer rapidement l’effort dans
une ou plusieurs barres sans analyser l’ensemble de la struc-
ture.

Pont en treillis
© Eugenio Merzagora
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Méthode de Ritter (méthode des sections)

Principe

La méthode de Ritter, aussi appelée méthode des sections, permet de déterminer les
efforts internes (traction ou compression) dans les barres d’un treillis sans analyser tous
les nœuds.
Elle repose sur les principes suivants :
• 1. Calcul préalable des efforts externes : détermine d’abord les réactions d’appui en

appliquant le principe fondamental de la statique (PFS) à l’ensemble du treillis.
• 2. Section fictive : coupe le treillis en traversant au maximum trois barres (dont deux

doivent converger en un nœud commun). Cette coupure permet d’isoler une partie de
la structure.

• 3. Analyse de l’équilibre : applique les équations d’équilibre à l’une des deux portions
isolées : { ∑

Fx = 0∑
Fy = 0∑
M = 0

• Cela permet de calculer les efforts normaux dans les barres sectionnées.
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Méthode de Ritter – Exemple (1/2)

On considère le treillis ci-contre, soumis à une force F⃗ = F y⃗ appliquée au point B.
Les réactions d’appui sont :

R⃗A = 0,75 F y⃗ , R⃗E = 0,25 F y⃗

Les barres font longueur L, et l’angle incliné est α = 60◦.
Objectif : déterminer les efforts internes dans les barres 4, 5 et
6.
Étape 1 – Isolement de la partie gauche :
On coupe le treillis selon une section traversant les barres 4, 5
et 6.
Étape 2 – Expression vectorielle des efforts internes :

N⃗4 = N4 x⃗ (barre 4 horizontale)

N⃗5 = N5 (cos α x⃗ + sin α y⃗) (barre 5 inclinée)

N⃗6 = N6 x⃗ (barre 6 horizontale)

Étape 3 – Équilibre vertical (projeté sur y⃗) :∑
Fy = −F + N5 sin α + RA = 0 ⇒ N5 = 0.29 F (traction)

Figure 1 : Treillis initial

Figure 2 : Coupe du treillis
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Méthode de Ritter – Exemple (2/2)
Équilibre des moments au point D (nœud de coupe) : On applique :∑

M⃗D = 0⃗

En pratique (projection scalaire) :

MD = RA · DA − F · DB + N6 · h = 0 ⇒ N6 = 0.14 F (Traction)

Équilibre horizontal (projeté sur x⃗) :∑
Fx = −N4 + N5 cos α + N6 = 0 ⇒ N4 = −0.29 F (Compression)

Interprétation des signes :
✓ N5 > 0 : barre en traction
✓ N6 > 0 : barre en traction
✓ N4 < 0 : barre en compression

Conclusion : La méthode de Ritter permet de déterminer rapidement les efforts dans certaines
barres en combinant le PFS et une bonne stratégie de coupe.
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Résumé — Traction / Compression, Treillis, Hyperstaticité

Formules et notions clés

Contrainte normale moyenne : σ = Nx
S

Déformation longitudinale : ε = ∆L
L

Loi de Hooke (traction/compression) : σ = E · ε

Critère de résistance (traction/compression) : σ ≤ Re
s

Treillis : assemblage de barres travaillant uniquement en traction ou en compres-
sion.
Méthode de Ritter : permet de déterminer les efforts dans les barres par isolement
d’une partie du treillis.

Hyperstaticité : h = Ni − Ne

Ni : nombre d’inconnues statiques (appuis + barres)
Ne : nombre d’équations d’équilibre disponibles

Système isostatique si h = 0, hyperstatique si h > 0

Concentration de contrainte : présence de zones où la contrainte locale dépasse
significativement la contrainte moyenne, souvent due à des géométries irrégulières,
des entailles ou des points d’appui. On multiplie alors la contrainte nominale par
un coefficient de concentration Kt
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Chapitre 5

Cisaillement - Effort tranchant
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PLAN
Chapitre 5

Objectifs :
• Analyser un problème soumis à des efforts tranchants

(cisaillement) et en déterminer les dimensions.

• Calculer les contraintes tangentielles au niveau de la
section de la poutre.

Contenu :
• Caractéristiques du cisaillement.
• Critères de dimensionnement en cisaillement.
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Cisaillement

Définition

Un corps est soumis à des efforts tranchants (ci-
saillement) lorsqu’il subit deux forces égales, de
même direction mais de sens opposés, provoquant
le glissement d’une partie (E1) par rapport à une
autre (E2).
Le torseur de cohésion s’exprime ainsi :

{τcoh}G,R =

{
0 0

Ty 0
Tz 0

}
G,R

où Ty est l’effort tranchant selon l’axe y⃗ et Tz
celui selon l’axe z⃗.

La vérification de la résistance d’une structure au cisaillement est cruciale dans de nom-
breux cas comme le dimensionnement des axes, goupilles, boulons, ...
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Cisaillement

Contrainte mécanique liée aux efforts tranchants (cisaillement)

En cisaillement simple, un corps (E) soumis à un effort tranchant T génère une contrainte
tangentielle τ .
La contrainte tangentielle τxy (ou τxz ) s’exerce dans le plan de la section, selon la direction
y⃗ (ou z⃗), et s’exprime par :

τxy =
Ty

S

(
ou τxz =

Tz

S

)
où S est la section droite soumise au cisaillement.
Cette contrainte correspond à une valeur moyenne, souvent notée τmoy ou τM .

Essai de cisaillement
Un essai de cisaillement pur ne peut pas être réalisé physiquement, car le cisaillement
simple agit uniquement sur une section précise de la poutre et non sur l’ensemble.
Néanmoins, un exemple sera présenté par la suite afin d’illustrer les effets du cisaillement.
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Exemple de cisaillement : rivet

Rivet Rivet soumis à un effort de
cisaillement

En zoomant sur un élément infinitésimal
le long de la poutre, on observe un glis-
sement transversal provoqué par le ci-
saillement.
Ce glissement est proportionnel à l’inten-
sité de l’effort tranchant appliqué.
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Cisaillement - exercice

Dans cet exercice, on cherche à déterminer le torseur de cohésion de la
poutre ]ABC[ soumise à une force concentrée F .

Poutre ]ABC[ avec force appliquée

Objectif : analyser la répartition des efforts internes (cisaillement et
moment) dans les tronçons ]AB[ et ]BC[.
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Cisaillement - exercice

On modélise le torseur de cohésion sur chaque tronçon.
Tronçon ]AB[ :

{τcoh}G1,R1
=

 0 0
−F 0
0 F · ∆x


G1,R1

Ici, −F correspond à l’effort tran-
chant (cisaillement) et F ·∆x au mo-
ment fléchissant sur la petite lon-
gueur ∆x .

Tronçon ]BC[ :

{τcoh}G2,R2
=

0 0
0 0
0 0


G2,R2

Aucun effort n’est transmis dans ce
tronçon (pas de force ni moment).

Remarque : Le moment fléchissant sur ]AB[ est proportionnel à ∆x . Pour
∆x ≪ 1, il est négligeable par rapport au cisaillement. On se concentre
donc principalement sur l’effort tranchant.
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Déformation de cisaillement ou angle de
distorsion/glissement

Glissement transversal
Angle de distorsion

Lors d’un cisaillement, le corps subit une
déformation de cisaillement, également
appelée angle de glissement ou angle de
distorsion γ (en radians). Cet angle est
défini géométriquement par :

tan γyx =
∆h
∆x

(25)

où ∆h représente le glissement trans-
versal (en mètres) et ∆x la distance (en
mètres).
Si l’angle de distorsion γ est très faible,
alors l’approximation suivante est va-
lable :

γyx ≈
∆h
∆x
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Essai de cisaillement

Essai de cisaillement
Bien qu’un essai de cisaillement pur ne soit pas réalisable
physiquement, il est possible d’étudier le comportement
du matériau lorsque le moment fléchissant est négligeable
(comme dans l’exemple précédent). Dans ce cadre, le corps
étudié est soumis à une force F de cisaillement (effort tran-
chant) et on mesure la relation entre l’effort tranchant et le
glissement transversal ∆h.
On observe deux zones distinctes (élastique et plastique).
La frontière entre ces deux zones correspond à la force li-
mite élastique au cisaillement Fe . À partir de cette force, on
définit la résistance élastique au glissement Reg (également
appelée résistance au cisaillement τE ) par :

Reg = τE =
Fe

S

avec S la surface de la section droite.
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Critère de résistance en cisaillement

Module de Coulomb
Dans le domaine élastique, la relation (τ, γ) est linéaire et définie par :

τmoy = G · γ avec G =
E

2(1 + ν)

avec τmoy la contrainte tangentielle moyenne dans la section droite, G le module de
Coulomb ou module de cisaillement, E le module de Young et ν le coefficient de Poisson.

Critère de résistance en cisaillement
Le critère de dimensionnement est donné par :

τmoy ≤ Rpg avec Rpg =
Reg

s

avec Rpg la résistance pratique au glissement (ou au cisaillement), τmoy la contrainte
tangentielle moyenne, Reg la résistance élastique au glissement, et s le coefficient de
sécurité.
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Résumé — Cisaillement

Formules clés

Contrainte tangentielle moyenne : τmoy = T
S

Déformation (angle de distorsion) : γ = ∆h
∆x

Module de Coulomb : τ = G · γ avec G = E
2(1+ν)

Critère de résistance : τmoy ≤ Rpg = Reg
s
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Chapitre 6

Synthèse
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Bases du dimensionnement des structures

Bases de la DDS
Théorie des poutres (1D) : Une poutre est un élément caractérisé par une ligne, appelée
fibre moyenne ou neutre, qui présente une courbure faible par rapport à la longueur de la
pièce, ainsi qu’une section perpendiculaire à cette fibre, qui varie lentement en fonction
de la longueur de la poutre. Cette section est appelée section droite. De plus, la dimension
longitudinale de la poutre est au moins cinq fois plus grande que ses autres dimensions
transversales.

• Hypothèses de la DDS :
- Un matériau est dit « homogène » s’il possède les mêmes propriétés mécaniques et
thermiques en tout point.
- Un matériau est dit « isotrope » si ses propriétés mécaniques et thermiques sont identiques
dans toutes les directions.
- Un matériau est dit « élastique linéaire » s’il retrouve sa forme initiale après avoir subi un
cycle de charge/décharge. Cette propriété implique que le matériau ne se déforme pas ou très
peu.
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Bases du dimensionnement des structures

Les hypothèses fondamentales du dimensionnement des structures (DDS) sont :

Hypothèse de Navier-Bernouilli

Les sections droites planes restent droites et planes
après déformation.

Principe de Saint-Venant

Les résultats obtenus lors du dimensionnement des
structures ne sont valides qu’à une distance suffi-
samment éloignée de la zone d’application des efforts
concentrés (zone de singularité).

Hypothèse des petites déformations (HPP)

Le solide est soumis à de petits déplacements (1/100 de la longueur de la fibre moyenne)
et de petites déformations.
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Torseur de cohésion – torseur de section

Définition
Le torseur de cohésion modélise l’action mécanique exercée par une partie de la poutre
(E2 , aval) sur une autre partie (E1, amont), de part et d’autre d’une coupure fictive. Il
permet de décrire les actions internes de la poutre. Ce torseur est exprimé au point G,
dans le repère local de la poutre étudiée.

{τcoh}G,R = {τint}G,R = −{τext→E1 }G,R = {τext→E2 }G,R

Attention : Lors de l’analyse des actions internes d’une poutre, il est nécessaire de réaliser des
coupes fictives dès que l’une des situations suivantes se présente :
• une discontinuité liée à la présence d’actions mécaniques concentrées (efforts ou moments

mécaniques extérieurs, liaisons mécaniques (pivot, rotule, appui-plan),etc.)
• une discontinuité géométrique (changement de direction de la ligne moyenne).
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Torseur de cohésion - torseur de section

Le torseur de cohésion est donné par :

{τcoh}G,R =

{
Nx Mtx
Ty Mfy
Tz Mfz

}
G,R

Avec Nx effort normal suivant l’axe x⃗ , Ty et Tz efforts tranchants respectivement
suivant les axes y⃗ et z⃗ ; Mtx moment de torsion suivant l’axe x⃗ , Mfy et Mfz
moments fléchissants suivant les axes y⃗ et z⃗.

Les diagrammes des sollicitations permettent de visualiser graphiquement les points ou
les zones de la poutre les plus sollicités (valeurs les plus élevées) en vue du
dimensionnement des structures.
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Contraintes mécaniques et torseur de cohésion

Relation entre contraintes mécaniques et torseur de cohésion

En théorie des poutres, le torseur de cohésion est relié aux contraintes mécaniques par :

{τcoh}G,R =


N Mtx

Ty Mfy

Tz Mfz


G,R

=



∫∫
(S) σxx .dS

∫∫
(S) (y .τxz − z.τxy ).dS∫∫

(S) τxy .dS
∫∫

(S) z σxx .dS∫∫
(S) τxz .dS −

∫∫
(S) y σxx .dS


G,R
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Traction-compression

Contrainte normale :

σ =
N
S

Déformations :
- Déformation longitudinale :

εL =
∆L
L0

- Déformation transversale :

εT =
∆d
d0

- Déformation-déplacement :

ε(x) =
du
dx

Loi de Hooke :

σ = E · εL

avec E , le module de Young.

Coefficient de Poisson :

ν =
−εT
εL

Critère de dimensionnement :

σ < Rpe =
Re

s
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Cisaillement - Efforts tranchants

Contrainte tangentielle :
τ =

T
S

Déformation de cisaillement / angle de distorsion / angle de glissement :

tan γ =
∆h
∆x

Relation contrainte tangentielle - distorsion

τmoy = G · γ

avec G module de Coulomb ou de cisaillement :

G =
E

2(1 + ν)

Critère de dimensionnement :

τmoy ≤
Reg

s
= Rpg
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Grandeurs physiques

Grandeurs physiques Symbole Unité
Longueur L mètre (m)
Surface S mètre2 (m2)

Force/action mécanique F Newton (N)
Moment d’une force M Newton · mètre (Nm)

Déplacement u mètre (m)
Déformation ε sans unité

Coefficient de Poisson ν sans unité
Glissement transversal ∆h mètre (m)

Distorsion γ radian (rad)
Contraintes mécaniques σ Pascal (Pa) souvent exprimé en MPa

Module de Young E Pascal (Pa) souvent exprimé en GPa
Module de Coulomb G Pascal (Pa) souvent exprimé en GPa
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