

Exercices : espérance conditionnelle

Licence Sciences pour la Santé

Intervenant: Mathieu Fauvernier

On administre un traitement à des patients.

- Le traitement est efficace (événement E) avec probabilité p
- Le traitement est inefficace (événement $E^{\mathcal{C}}$) avec probabilité 1-p

La présence d'effets secondaires est donnée par $Y \in \{0,1\}$.

- Si *E*, alors P(Y = 1) = 0.2
- Si E^{C} , alors P(Y = 1) = 0.5
- 1. Déterminer la loi conditionnelle de Y sachant E et sachant E^C
- 2. Calculer P(E|Y=1). Interpréter.
- 3. Calculer E(Y)

1. Déterminer la loi conditionnelle de Y sachant E et sachant E^C

- On a P(Y = 1|E) = 0.2 et P(Y = 0|E) = 0.8
- On a $P(Y = 1|E^C) = 0.5$ et $P(Y = 0|E^C) = 0.5$

2. Calculer P(E|Y=1). Interpréter

$$P(E|Y = 1) = \frac{P(Y = 1|E)P(E)}{P(Y = 1)}$$

$$P(E|Y = 1) = \frac{P(Y = 1|E)P(E)}{P(Y = 1|E)P(E) + P(Y = 1|E^{C})P(E^{C})}$$

$$P(E|Y=1) = \frac{0.2p}{0.2p + 0.5(1-p)} = \frac{0.2p}{0.5 - 0.3p} = \frac{2p}{5 - 3p}$$

Il s'agit de la probabilité que le traitement soit efficace sachant que l'on observe des effets secondaires.

3. Calculer E(Y)

$$E(Y|E) = 0 * P(Y = 0|E) + 1 * P(Y = 1|E) = 0.2$$

 $E(Y|E^{C}) = 0 * P(Y = 0|E^{C}) + 1 * P(Y = 1|E^{C}) = 0.5$

Donc

$$E(Y) = E(Y|E)P(E) + E(Y|E^{C})P(E^{C}) = 0.2p + 0.5(1 - p)$$

= 0.5 - 0.3p

Un biomarqueur B est mesuré pour dépister une maladie D (présence ou absence). La loi jointe est donnée par

D \ B	B = Bas	B = Intermédiaire	B = Haut
D = Malade	0.006	0.014	0.030
D = Sain	0.494	0.296	0.160

- 1. Donner les lois marginales de B et D
- 2. Pour chaque niveau du biomarqueur $b \in \{Bas,Intermédiaire,Haut\}$ donner la loi conditionnelle de D sachant B = b.
- 3. Interpréter la probabilité P(D = Malade | B = Haut)

Un biomarqueur B est mesuré pour dépister une maladie D (présence ou absence). La loi jointe est donnée par

D \ B	B = Bas	B = Intermédiaire	B = Haut
D = Malade	0.006	0.014	0.030
D = Sain	0.494	0.296	0.160

1. Donner les lois marginales de B et D

$$P(B = Bas) = 0,006 + 0,494 = 0,5$$

 $P(B = Intermédiaire) = 0,014 + 0,296 = 0,31$
 $P(B = Haut) = 0,03 + 0,16 = 0,19$

Un biomarqueur B est mesuré pour dépister une maladie D (présence ou absence). La loi jointe est donnée par

D \ B	B = Bas	B = Intermédiaire	B = Haut
D = Malade	0.006	0.014	0.030
D = Sain	0.494	0.296	0.160

1. Donner les lois marginales de B et D

$$P(D = Malade) = 0.006 + 0.014 + 0.03 = 0.05$$

 $P(D = Sain) = 0.494 + 0.296 + 0.160 = 0.95$

Un biomarqueur B est mesuré pour dépister une maladie D (présence ou absence). La loi jointe est donnée par

D \ B	B = Bas	B = Intermédiaire	B = Haut
D = Malade	0.006	0.014	0.030
D = Sain	0.494	0.296	0.160

2. Pour chaque niveau du biomarqueur $b \in \{Bas,Intermédiaire,Haut\}$ donner la loi conditionnelle de D sachant B = b.

$$P(D = Malade | B = Haut) = \frac{P(D = malade \ et \ B = Haut)}{P(B = Haut)} = \frac{0,03}{0,19}$$

$$\approx 0.16$$

Un biomarqueur B est mesuré pour dépister une maladie D (présence ou absence). La loi jointe est donnée par

D \ B	B = Bas	B = Intermédiaire	B = Haut
D = Malade	0.006	0.014	0.030
D = Sain	0.494	0.296	0.160

3. Interpréter la probabilité P(D = Malade | B = Haut)

$$P(D = Malade|B = Haut) \approx 0.16$$

Il s'agit de la valeur prédictive positive associée au test diagnostique défini par la valeur haute du biomarqueur.

Essai clinique randomisé sur 1000 patients. On note T le groupe (T=1 traitement actif, T=0 placebo) et R l'issue binaire après 6 mois (R=1 récupération complète, R=0 non récupération).

T \ R	R = 1 (récup.)	R = 0 (échec)
T = Traitement (1)	0.42	0.08
T = Placebo (0)	0.30	0.20

Calculer l'Absolute Risk Reduction (ARR) défini par

$$AAR = P(R = 1 | T = 1) - P(R = 1 | T = 0)$$

et en déduire le Number Needed to Treat (NNT) = 1/ARR. Interpréter (arrondir NNT à l'entier supérieur)

Essai clinique randomisé sur 1000 patients. On note T le groupe (T=1 traitement actif, T=0 placebo) et R l'issue binaire après 6 mois (R=1 récupération complète, R=0 non récupération).

T \ R	R = 1 (récup.)	R = 0 (échec)
T = Traitement (1)	0.42	0.08
T = Placebo (0)	0.30	0.20

$$P(R = 1 \mid T = 1) = \frac{P(R = 1 \text{ et } T = 1)}{P(T = 1)} = \frac{0.42}{0.5} = 0.84$$

$$P(R = 1 \mid T = 0) = \frac{P(R = 1 \text{ et } T = 0)}{P(T = 0)} = \frac{0.3}{0.5} = 0.6$$

Essai clinique randomisé sur 1000 patients. On note T le groupe (T=1 traitement actif, T=0 placebo) et R l'issue binaire après 6 mois (R=1 récupération complète, R=0 non récupération).

T \ R	R = 1 (récup.)	R = 0 (échec)
T = Traitement (1)	0.42	0.08
T = Placebo (0)	0.30	0.20

$$AAR = P(R = 1 \mid T = 1) - P(R = 1 \mid T = 0) = 0.84 - 0.6 = 0.24$$

 $NNT = \frac{1}{AAR} = \frac{1}{0.24} \approx 4.17$

En soignant 5 patients avec le traitement actif, on engendre une récupération supplémentaire en moyenne (ou on évite un échec)