

Rappels et exercices sur espérance et variance pour les lois discrètes

Licence Sciences pour la Santé

Intervenant: Mathieu Fauvernier

• L'espérance d'une v.a.r correspond à sa valeur moyenne

$$E[X] = \sum_{i=1}^{+\infty} x_i P(X = x_i)$$

• Soit une fonction h, comment définir E[h(X)] ?

• Exemple : soit X la variable aléatoire telle que les valeurs possibles et probabilités associées sont données ci-dessous

X	-2,5	0	1	2
P(X=x)	0,2	0,4	0,3	0,1

• Calculer E(X) et E(X²)

• Exemple : soit X la variable aléatoire telle que les valeurs possibles et probabilités associées sont données ci-dessous

X	-2,5	0 1		2
P(X=x)	0,2	0,4	0,3	0,1

•
$$E(X) = -2.5 * 0.2 + 0 * 0.4 + 1 * 0.3 + 2 * 0.1 = 0$$

• Exemple : soit X la variable aléatoire telle que les valeurs possibles et probabilités associées sont données ci-dessous

X	-2,5	0	1	2
X ²	6,25	0	1	4
P(X=x)	0,2	0,4	0,3	0,1

•
$$E(X^2) = ?$$

• Exemple : soit X la variable aléatoire telle que les valeurs possibles et probabilités associées sont données ci-dessous

X	-2,5	0	1	2
X ²	6,25	0	1	4
P(X=x)	0,2	0,4	0,3	0,1

•
$$E(X^2) = 6.25 * 0.2 + 0 * 0.4 + 1 * 0.3 + 4 * 0.1 = 1.95$$

• Soit une fonction h, comment définir E[h(X)] ?

$$E[h(X)] = \sum_{i=1}^{+\infty} h(x_i)P(X = x_i)$$

Variance d'une variable aléatoire

La variance d'une v.a.r mesure la dispersion autour de la moyenne

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

L'écart-type correspond à la racine carrée de la variance

$$\sigma[X] = \sqrt{Var[X]}$$

Variance d'une variable aléatoire

La variance d'une variable aléatoire mesure la dispersion autour de la moyenne

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

$$E[X^2] = \sum_{i=1}^{+\infty} x_i^2 P(X = x_i)$$

$$Var[X] = \sum_{i=1}^{+\infty} (x_i - E(X))^2 P(X = x_i)$$

Naissances multiples

X	1	2	3	4	5+
P(X=x)	96%	3%	0,9%	0,07%	0,03%

Le ministère des Solidarités et de la Santé estime le coût annuel moyen d'un enfant à 9 000 €.

Quelle est la loi du coût moyen, son espérance et sa variance ?

Naissances multiples

X	1	2	3	4	5+
coût	9k	18k	27k	36k	45k
P(X=x)	96%	3%	0,9%	0,07%	0,03%

$$E(Co\hat{u}t) = E(9000 * X) = 9000 * E(X) = 9461,7$$
 avec

$$E(X) = 1 * 0.96 + 2 * 0.03 + 3 * 0.009 + 4 * 0.0007 + 5 * 0.0003$$

= 1.0513

Naissances multiples

X	1	2	3	4	5+
coût	9k	18k	27k	36k	45k
P(X=x)	96%	3%	0,9%	0,07%	0,03%

$$Var(Cout) = Var(9000 * X) = 9000^2 * Var(X) = 6031933$$
 avec

$$Var(X)$$
= $(1 - 1,05)^2 * 0,96 + (2 - 1,05)^2 * 0,03 + (3 - 1,05)^2 * 0,009$
+ $(4 - 1,05)^2 * 0,0007 + (5 - 1,05)^2 * 0,0003 \approx 0,0745$

Naissances multiples

X	1	2	3	4	5+
coût	9k	18k	27k	36k	45k
P(X=x)	96%	3%	0,9%	0,07%	0,03%

$$Var(Cout) = Var(9000 * X) = 9000^2 * Var(X) = 6031933$$
 avec

L'unité de la variance est en euros^2 donc pas super interprétable ! Ecart-type = $\sqrt{6031933}$ = 2456 euros

• On s'intéresse à la pression artérielle systolique prédite à partir de l'âge. On dispose d'un groupe de patientes dont la distribution d'âge est la suivante (on donne les âges médians de 5 classes d'âges)

age	20	30	40	50	60
P(Age=age)	5%	10%	20%	30%	35%

• Pour un âge donné a, la pression est donnée par (en mmHg) : $Pre(a) = 0.01*a^2 + 0.05*a + 107$

Calculer E(Age), Var(Age), ainsi que E(Pre) et Var(Pre)

age	20	30	40	50	60
P(Age=age)	5%	10%	20%	30%	35%

$$E(Age) = 20 * 0.05 + 30 * 0.1 + 40 * 0.2 + 50 * 0.3 + 60 * 0.35 = 48$$

$$Var(Age)$$
= $(20 - 48)^2 * 0.05 + (30 - 48)^2 * 0.1 + (40 - 48)^2 * 0.2$
+ $(50 - 48)^2 * 0.3 + (60 - 48)^2 * 0.35 = 136$

age	20	30	40	50	60
P(Age=age)	5%	10%	20%	30%	35%

Sachant que
$$E(Age) = 48$$
, et que $Pre(a) = 0.01 * a^2 + 0.05 * a + 107$

A-t-on
$$E(Pre) = Pre(48) = 132,44$$
?

age	20	30	40	50	60
Pre	112	117,5	125	134,5	146
P(Age=age)	5%	10%	20%	30%	35%

```
E(Pre)
= 112 * 0,05 + 117,5 * 0,1 + 125 * 0,2 + 134,5 * 0,3 + 146 * 0,35
= 133,8 \neq Pre(48)
```

age	20	30	40	50	60
Pre	112	117,5	125	134,5	146
P(Age=age)	5%	10%	20%	30%	35%

```
Var(Pre)
= (112 - 133.8)^2 * 0.05 + (117.5 - 133.8)^2 * 0.1 + (125 - 133.8)^2
* 0.2 + (134.5 - 133.8)^2 * 0.3 + (146 - 133.8)^2 * 0.35 = 118.06
```

age	20	30	40	50	60
Pre	112	117,5	125	134,5	146
P(Age=age)	5%	10%	20%	30%	35%

$$Var(Pre) = 118,06$$

$$Ecart_type(Pre) = 10,87$$

Des patients subissent une opération chirurgicale nécessitant l'administration préalable d'un réactif. La distribution des durées d'opérations est donnée ci-dessous

durée	1	2	3	4	5
P(Durée=durée)	10%	40%	30%	15%	5%

Sachant que la quantité de réactif présente dans l'organisme en fonction du temps est

$$R(t) = -t^2 + 6 * t$$

Calculer $E(R(Dur\acute{e}e))$ et $Var(R(Dur\acute{e}e))$

Des patients subissent une opération chirurgicale nécessitant l'administration préalable d'un réactif. La distribution des durées d'opérations est donnée ci-dessous

durée	1	2	3	4	5
R(durée)	5	8	9	8	5
P(Durée=durée)	10%	40%	30%	15%	5%

$$E(R(Dur\acute{e}e)) = 5 * 0.1 + 8 * 0.4 + 9 * 0.3 + 8 * 0.15 + 5 * 0.05$$

= 7.85

Des patients subissent une opération chirurgicale nécessitant l'administration préalable d'un réactif. La distribution des durées d'opérations est donnée ci-dessous

durée	1	2	3	4	5
R(durée)	5	8	9	8	5
P(Durée=durée)	10%	40%	30%	15%	5%

$$Var(R(Dur\acute{e}e))$$

= $(5-7.85)^2*0.1+(8-7.85)^2*0.4+(9-7.85)^2*0.3+(8-7.85)^2*0.15+(5-7.85)^2*0.05=1.6275$

Des patients subissent une opération chirurgicale nécessitant l'administration préalable d'un réactif. La distribution des durées d'opérations est donnée ci-dessous

durée	1	2	3	4	5
R(durée)	5	8	9	8	5
P(Durée=durée)	10%	40%	30%	15%	5%

Sachant que l'on doit garder les patients en salles de réveil tant qu'il reste du réactif dans leur organisme. Combien de temps, en moyenne, un patient attendra-t-il en salle de réveil ?

durée	1	2	3	4	5
R(durée)	5	8	9	8	5
P(Durée=durée)	10%	40%	30%	15%	5%

La quantité de réactif présente dans l'organisme en fonction du temps est

$$R(t) = -t^2 + 6 * t$$

Cette quantité est nulle lorsque $R(t) = 0 \Leftrightarrow t = 6$ ou t = 0

Durée	1	2	3	4	5
Temps d'attente	5	4	3	2	1
P(Durée=durée)	10%	40%	30%	15%	5%

$$E(Temps\ attente) = 5 * 0.1 + 4 * 0.4 + 3 * 0.3 + 2 * 0.15 + 1 * 0.05$$

= 0.5 + 1.6 + 0.9 + 0.3 + 0.05 = 3.35