

Couples de variables discrètes : lois jointe, marginale et conditionnelle

Licence Sciences pour la Santé

Intervenant: Mathieu Fauvernier

Question introductive

X et Y suivent chacune une loi de Bernoulli de paramètre 1/2

Que vaut la probabilité suivante ?

$$P(X = 0, Y = 0)$$

Question introductive

X et Y suivent chacune une loi de Bernoulli de paramètre 1/2

Que vaut la probabilité suivante ?

$$P(X=0,Y=0)$$

IMPOSSIBLE DE REPONDRE! On ne connaît pas la dépendance entre X et Y (on pourrait très bien avoir X=Y ou X=1-Y ou autre)

Couple de variables aléatoires et loi jointe

Soit un couple de variables aléatoires discrètes (X, Y)

La loi jointe du couple permet de caractériser la probabilité que X et Y prennent **conjointement** un couple de valeurs

$$P(X=x,Y=y)$$

La loi jointe est aussi appelée loi conjointe

Loi jointe et indépendance

De manière générale la loi jointe a une expression très complexe.

On fait donc souvent l'hypothèse d'indépendance, qui implique

$$P(X = x, Y = y) = P(X = x) * P(Y = y)$$

Loi jointe et indépendance

De manière générale la loi jointe a une expression très complexe.

On fait donc souvent l'hypothèse d'indépendance, qui implique

$$P(X = x, Y = y) = P(X = x) * P(Y = y)$$

Note :
$$P(X = x, Y = y)$$
 peut s'écrire $P(X = x \text{ et } Y = y)$ ou $P(X = x \cap Y = y)$

Exemple de loi jointe

On lance deux dés. Quelle est la loi du couple de dés ?

Dé 1 \ Dé 2	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Attention ici on suppose que les dés sont indépendants!

Loi marginale

Lorsque l'on on un couple de variables (X,Y), la loi de X est appelée première loi marginale et la loi de Y est la seconde loi marginale.

Il est possible de retrouver une loi marginale à partir de la loi jointe.

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

Exemple de loi marginale

On lance deux dés. Quelle est la loi du dé 1?

Dé 1 \ Dé 2	1	2	3	4	5	6	Somme des probas du dé 2
1	1/36	1/36	1/36	1/36	1/36	1/36	6/36=1/6
2	1/36	1/36	1/36	1/36	1/36	1/36	6/36=1/6
3	1/36	1/36	1/36	1/36	1/36	1/36	6/36=1/6
4	1/36	1/36	1/36	1/36	1/36	1/36	6/36=1/6
5	1/36	1/36	1/36	1/36	1/36	1/36	6/36=1/6
6	1/36	1/36	1/36	1/36	1/36	1/36	6/36=1/6

Exemple de loi marginale - 2

D'après la loi du couple suivant, donner la loi marginale de X

		Y				
		5	6	7		
	-3	1/8	1/24	1/12		
X	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Exemple de loi marginale - 2

On a

$$P(X = -3) = \frac{1}{8} + \frac{1}{24} + \frac{1}{12} = \frac{1}{4}$$

$$P(X = -2) = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$

$$P(X = -1) = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$$

$$P(X = 0) = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$$

		Υ				
		5	6	7		
	-3	1/8	1/24	1/12		
X	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Rappels sur les probabilités conditionnelles

Soient (Ω, \mathcal{A}, P) un espace de probabilité et A et B deux événements aléatoires tels que $P(B) \neq 0$.

On appelle probabilité conditionnelle de A sachant B la quantité

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Loi conditionnelle

Lorsque l'on on un couple de variables (X, Y), la loi conditionnelle de X sachant Y = y est définie par les probabilités suivantes

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Attention il faut
$$P(Y = y) \neq 0$$

Exemple de loi conditionnelle

D'après la loi du couple suivant, donner la loi de X sachant Y=5

		Y				
		5	6	7		
X	-3	1/8	1/24	1/12		
	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Exemple de loi conditionnelle

On a
$$P(Y = 5) = \frac{1}{8} + \frac{1}{8} + \frac{1}{6} = \frac{5}{12}$$

$$P(X = -3|Y = 5) = \frac{\frac{1}{8}}{P(Y = 5)}$$

$$P(X = -2|Y = 5) = \frac{\frac{1}{8}}{P(Y = 5)}$$

$$P(X = -1|Y = 5) = 0$$

 $P(X = 0 | Y = 5) = \frac{\frac{1}{6}}{P(Y = 5)}$

		Υ				
		5	6	7		
	-3	1/8	1/24	1/12		
X	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Espérance conditionnelle

L'espérance conditionnelle de X sachant Y = y est définie par

$$E(X|Y = y) = \sum_{x} x * P(X = x|Y = y)$$

Attention il faut
$$P(Y = y) \neq 0$$

Exemple d'espérance conditionnelle

D'après la loi du couple suivant, donner l'espérance de X sachant Y=5

		Y				
		5	6	7		
X	-3	1/8	1/24	1/12		
	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Exemple d'espérance conditionnelle

 $P(X = 0 | Y = 5) = \frac{\frac{1}{6}}{P(Y = 5)}$

On avait
$$P(Y = 5) = \frac{1}{8} + \frac{1}{8} + \frac{1}{6} = \frac{5}{12}$$

$$P(X = -3|Y = 5) = \frac{\frac{1}{8}}{P(Y = 5)}$$

$$P(X = -2|Y = 5) = \frac{\frac{1}{8}}{P(Y = 5)}$$

$$P(X = -1|Y = 5) = 0$$

		Υ				
		5	6	7		
	-3	1/8	1/24	1/12		
X	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Exemple d'espérance conditionnelle

Donc

$$E(X|Y=5) = \frac{1}{P(Y=5)} \left(-3 * \frac{1}{8} - 2 * \frac{1}{8} \right)$$

		Υ				
		5	6	7		
	-3	1/8	1/24	1/12		
X	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

$$E(X|Y=5) = \frac{12}{5} \left(-\frac{5}{8}\right) = -\frac{3}{2}$$

Loi de l'espérance totale

L'espérance conditionnelle de X sachant Y = y est définie par

$$E(X|Y = y) = \sum_{x} x * P(X = x|Y = y)$$

Et on a

$$E(X) = ?$$

Loi de l'espérance totale

L'espérance conditionnelle de X sachant Y = y est définie par

$$E(X|Y = y) = \sum_{x} x * P(X = x|Y = y)$$

Et on a

$$E(X) = \sum_{y} E(X|Y = y) * P(Y = y)$$

Loi de l'espérance totale

L'espérance conditionnelle de X sachant Y = y est définie par

$$E(X|Y = y) = \sum_{x} x * P(X = x|Y = y)$$

Et on a

$$E(X) = \sum_{y} E(X|Y = y) * P(Y = y)$$

Exemple : calcul de la moyenne générale à partir des moyennes par matières et des coefficients de chaque matière

Espérance d'une fonction d'un couple

Soit une fonction g, alors on a

$$E(g(X,Y)) = \sum_{x,y} g(x,y) * P(X = x,Y = y)$$

Exemple d'espérance d'une fonction d'un couple

D'après la loi du couple suivant, donner E(XY)

		Y				
		5	6	7		
X	-3	1/8	1/24	1/12		
	-2	1/8	1/8	0		
	-1	0	1/6	1/12		
	0	1/6	1/12	0		

Exemple d'espérance d'une fonction d'un couple

	1 1
E(x)	(XY) = -3 * 5 * - 2 * 5 * - 1 * 5 * 0 + 0 * 5 * - 1
	$XY) = -3 * 5 * \frac{1}{8} - 2 * 5 * \frac{1}{8} - 1 * 5 * 0 + 0 * 5 * \frac{1}{6} - 1 * 6 * \frac{1}{24} - 2 * 6 * \frac{1}{8} - 1 * 6 * \frac{1}{6} + 0 * 6 * \frac{1}{12} - \frac{1}{12}$
	$3*6*\frac{1}{-}-2*6*\frac{1}{-}-1*6*\frac{1}{-}+0*6*\frac{1}{-}-$
	24 8 6 1 12
	$3*7*\frac{1}{12}-2*7*0-1*7*\frac{1}{12}+0*7*0$
7	12 12 12

		Υ				
		5	6	7		
	-3	1/8	1/24	1/12		
X	-2	1/8	1/8	0		
^	-1	0	1/6	1/12		
	0	1/6	1/12	0		

loi conditionnelle : quel intérêt ?

Dans la vraie vie, lorsque l'on souhaite prendre une décision :

• Il existe plusieurs possibilités (par définition) -> les probas sont utiles

On a des connaissances préalables à la prise de décision -> conditionnement

Soit une maladie M de prévalence P(M)

Un individu effectue un test de dépistage. Supposons le test positif (événement T), quelle est la probabilité que l'individu soit malade ?

Soit une maladie M de prévalence P(M)

Un individu effectue un test de dépistage. Supposons le test positif (événement T), quelle est la probabilité que l'individu soit malade ?

On cherche à calculer P(M|T)

Soit une maladie M de prévalence P(M)

Un individu effectue un test de dépistage. Supposons le test positif (événement T), quelle est la probabilité que l'individu soit malade ?

On cherche à calculer
$$P(M|T) = \frac{P(T|M)P(M)}{P(T)}$$

Avec
$$P(T) = P(T|M)P(M) + P(T|\overline{M})P(\overline{M})$$

P(M): probabilité pré-test

P(M|T): probabilité post-test

$$P(M|T) = \frac{P(T|M)P(M)}{P(T|M)P(M) + P(T|\overline{M})P(\overline{M})}$$

Si
$$P(M) = 0.1$$
; $P(T|M) = 0.99$; $P(T|\overline{M}) = 0.01$

Alors

$$P(M|T) \approx 0.92$$

P(M): probabilité pré-test

P(M|T): probabilité post-test

$$P(M|T) = \frac{P(T|M)P(M)}{P(T|M)P(M) + P(T|\overline{M})P(\overline{M})}$$

Si
$$P(M) = \mathbf{0}, \mathbf{001}; P(T|M) = 0.99; P(T|\overline{M}) = 0.01$$

Alors

$$P(M|T) \approx 0.09$$

La probabilité post-test est une mise à jour de la probabilité pré-test