

Rappels de probabilités et lois usuelles

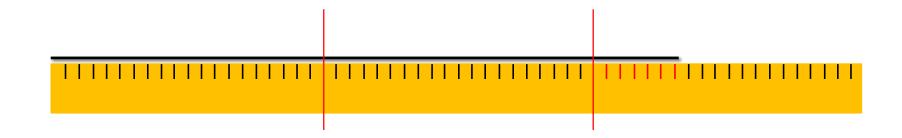
LICENCE SCIENCES POUR LA SANTÉ

Intervenant: Mathieu Fauvernier

Comment mesurer la longueur du segment noir avec la règle orange ?

2

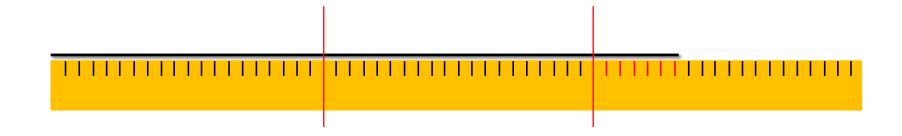
Comment mesurer la longueur du segment noir avec la règle orange ?



On va faire correspondre la longueur du segment avec un multiple de la longueur de la règle : l(segment) = 2*l(règle) + 6/20*l(règle) + ...

Les « ... » représentent la limite de notre précision

Comment mesurer la longueur du segment noir avec la règle orange?

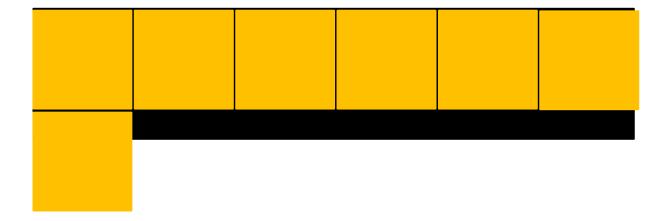


A la fin on peut toujours trouver x tel que : I(segment) = x*I(règle)Même si x sera probablement non entier

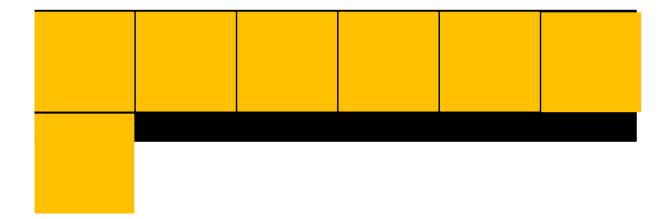
Comment mesurer la surface du rectangle noir avec le carré orange ?

Comment mesurer la surface du rectangle noir avec le carré orange ?

Comment mesurer la surface du rectangle noir avec le carré orange ?



Comment mesurer la surface du rectangle noir avec le carré orange ?



Comme pour la longueur, la surface du rectangle sera multiple de la surface du carré (mais ce multiple « x » sera probablement non entier) s(rectangle noir) = x*s(carré orange)

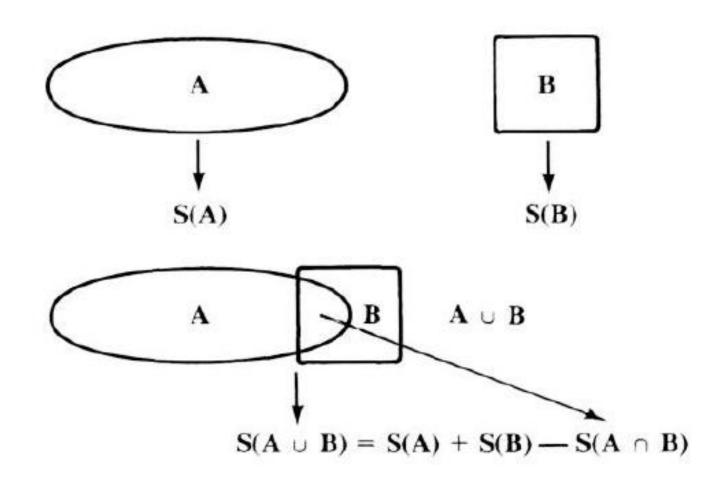
Quelques propriétés se dessinent :

1. La mesure est positive

2. Pour mesurer un objet il faut pouvoir mesurer toutes les sous-parties de cet objet (rappelez-vous, le multiple à trouver n'est pas entier)

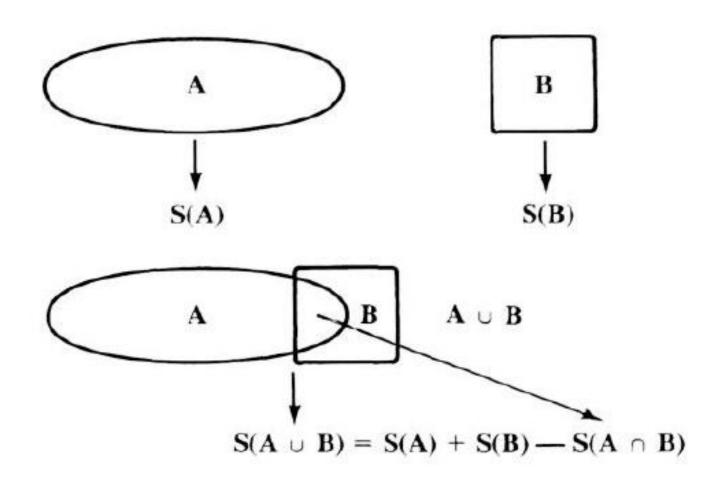
3. Additivité : en prenant deux objets bout à bout, la mesure de l'ensemble est la somme des mesures

Concernant l'additivité, attention toutefois si les deux objets se recoupent (comme les surfaces ci-contre)



Concernant l'additivité, attention toutefois si les deux objets se recoupent (comme les surfaces ci-contre)

Pour obtenir la surface de l'union, il faut enlever la mesure de l'intersection sinon elle est comptée deux fois



Ok super, et les probas?

- 1. La probabilité est un nombre positif
- 2. Prenons l'exemple d'un dé à 6 faces.

Proba d'avoir un chiffre pair ? On va sommer les probas d'avoir chacun des chiffres pairs.

Ok super, et les probas?

- 1. La probabilité est un nombre positif
- 2. Prenons l'exemple d'un dé à 6 faces.

Proba d'avoir un chiffre pair ? On va sommer les probas d'avoir chacun des chiffres pairs.

Proba d'avoir un chiffre pair ou un multiple de trois ? On va procéder par somme également mais en enlevant la proba d'avoir un six (car il est à la fois pair et multiple de trois)

Ok super, et les probas?

- 1. La probabilité est un nombre positif
- 2. Prenons l'exemple d'un dé à 6 faces.

Proba d'avoir un chiffre pair ? On va sommer les probas d'avoir chacun des chiffres pairs.

Proba d'avoir un chiffre pair ou un multiple de trois ? On va procéder par somme également mais en enlevant la proba d'avoir un six (car il est à la fois pair et multiple de trois)

Moralité: La probabilité est une mesure (appliquée à des ensembles)

Expérience aléatoire

<u>Expérience aléatoire</u>: expérience dont le résultat est non prédictible à l'avance (même si elle est répétée dans des conditions identiques)

 Ω = Ensemble de tous les résultats possibles d'une expérience aléatoire

$$Ex : \Omega = \{pile, face\}, \Omega = \{1,2,3,4,5,6\}...$$

Evénement aléatoire A = Sous-ensemble de Ω (mathématiquement, un événement est un ensemble)

$$Ex : A = \{2,4,6\}$$

Opérations sur les événements

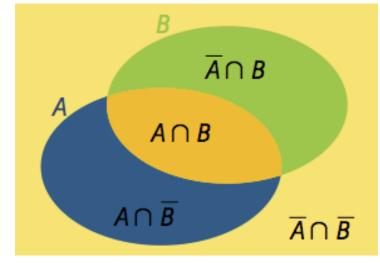
Complémentaire de l'événement $A:A^{\mathcal{C}}$ ou \overline{A}

On note $\Omega^C = \emptyset$ (ensemble vide, ou événement impossible)

Intersection des événements A et B : $A \cap B$

Si $A \cap B = \emptyset$, on dit que A et B sont incompatibles

Union des événements A et B : A U B



Opérations sur les événements

• Ensemble des parties de Ω (souvent noté \mathcal{A})

Ex : Si
$$\Omega = \{pile, face\}$$
, alors $\mathcal{A} = \{\emptyset, pile, face, \Omega\}$

Si
$$\Omega = \{1,2,3\}$$
, alors $\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \Omega\}$

• Si Ω a N éléments, alors $\mathcal A$ en compte 2^N

• On dit que (Ω, \mathcal{A}) est un espace probabilisable

Probabilité

Probabilité sur (Ω, \mathcal{A}) = application P de \mathcal{A} dans [0; 1] telle que

- 1. $P(\Omega) = 1$
- 2. Si $(A_n)_{n\geq 1}$ est une famille d'événements de \mathcal{A} 2 à 2 incompatibles,

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

 (Ω, \mathcal{A}, P) se nomme un espace de probabilité

Probabilité: propriétés

1.
$$P(\emptyset) = 0$$

2.
$$P(A^C) = 1 - P(A)$$

3. Si $A \subset B$ alors $P(A) \leq P(B)$

4.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probabilité conditionnelle

Soient (Ω, \mathcal{A}, P) un espace de probabilité et A et B deux événements aléatoires tels que $P(B) \neq 0$.

On appelle probabilité conditionnelle de A sachant B la quantité

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Probabilité conditionnelle : exemple

Après un lancer de dé, quelle est la probabilité d'obtenir un 6 (A) sachant qu'on a eu un nombre pair (B) ?

Probabilité conditionnelle : exemple

Après un lancer de dé, quelle est la probabilité d'obtenir un 6 (A) sachant qu'on a eu un nombre pair (B) ?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{1/6}{1/2} = 1/3$$

Probabilité conditionnelle : propriétés

1.
$$P(\Omega|B) = 1$$

2.
$$P(A^C|B) = 1 - P(A|B)$$

3.
$$P(A \cup B|C) = P(A|C) + P(B|C) - P(A \cap B|C)$$

4.
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Formule des probabilités totales

Soit $(A_i)_{i \in I}$ une famille d'événements formant une partition de Ω , c'està-dire avec $\bigcup A_i = \Omega$ et $A_i \cap A_j = \emptyset$ pour tout $i \neq j$.

Supposons de plus que $P(A_i) \neq 0$ pour tout i.

Alors,

$$P(A) = \sum_{i \in I} P(A \cap A_i) = \sum_{i \in I} P(A|A_i)P(A_i)$$

Formule des probabilités totales

Exemple avec $(A_i)_{i \in I} = (B, B^C)$.

Alors,

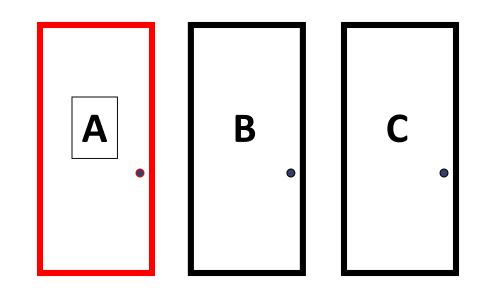
$$P(A) = P(A \cap B) + P(A \cap B^{C}) = P(A|B)P(B) + P(A|B^{C})P(B^{C})$$

Illustration: problème de Monty Hall

Derrière l'une de ces portes se cache une voiture
Derrière les deux autres se trouve une chèvre

A . B . C .

Vous devez en choisir une

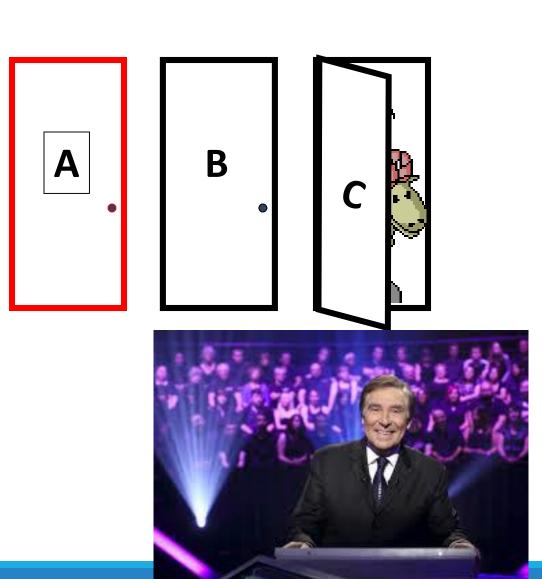


Imaginons que vous choisissiez la porte A

Vous avez choisi A

Jean-Pierre, (qui sait où se trouve la voiture) ouvre la porte C et découvre une chèvre

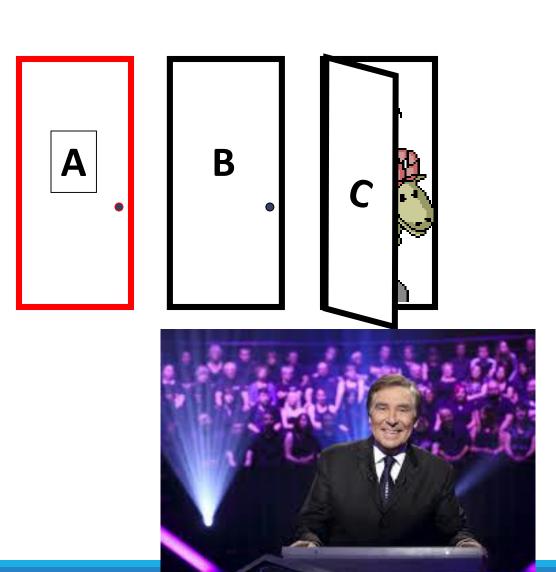
La voiture est donc derrière A ou B



A ce stade, Jean-Pierre vous propose de changer de porte

Que faites-vous?

Gardez-vous la A ou changezvous pour la B ?



Résolution via les probabilités totales. Soient les événements

G = gagner la voiture

B = choisir la bonne porte lors du choix initial

$$P(G) = P(G|B)P(B) + P(G|B^C)P(B^C)$$

Résolution via les probabilités totales. Soient les événements

G = gagner la voiture

B = choisir la bonne porte lors du choix initial

$$P(G) = P(G|B)P(B) + P(G|B^C)P(B^C)$$

Stratégie garder la porte initiale :

$$P(G) = 1 * 1/3 + 0 * 2/3 = 1/3$$

Résolution via les probabilités totales. Soient les événements

G = gagner la voiture

B = choisir la bonne porte lors du choix initial

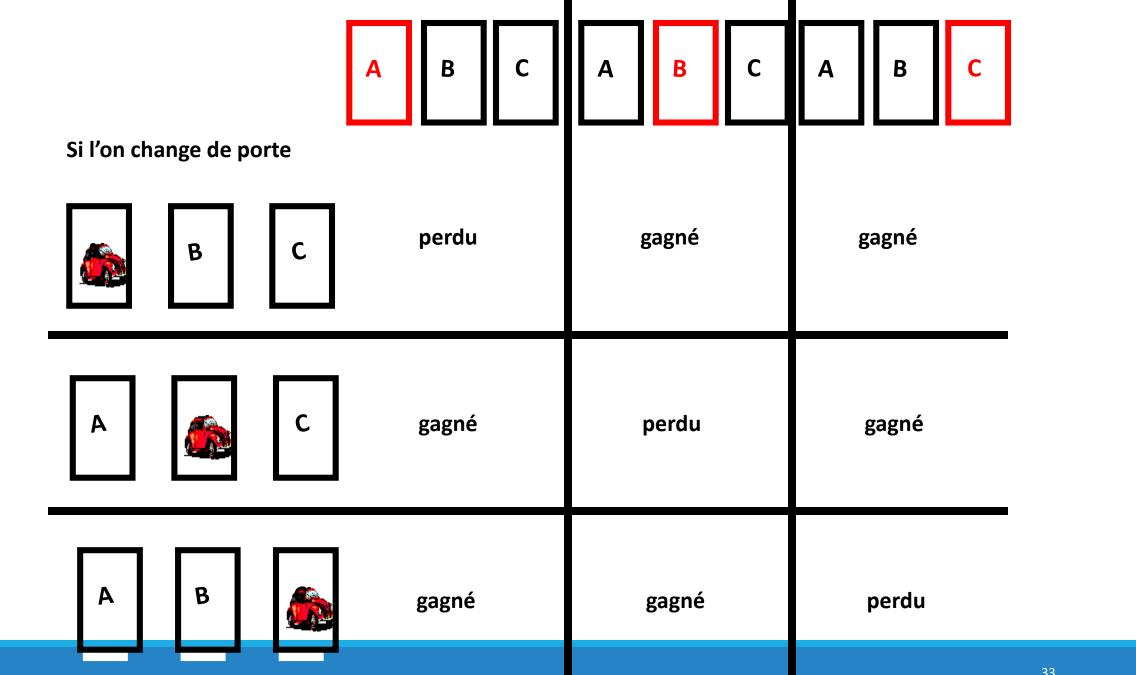
$$P(G) = P(G|B)P(B) + P(G|B^C)P(B^C)$$

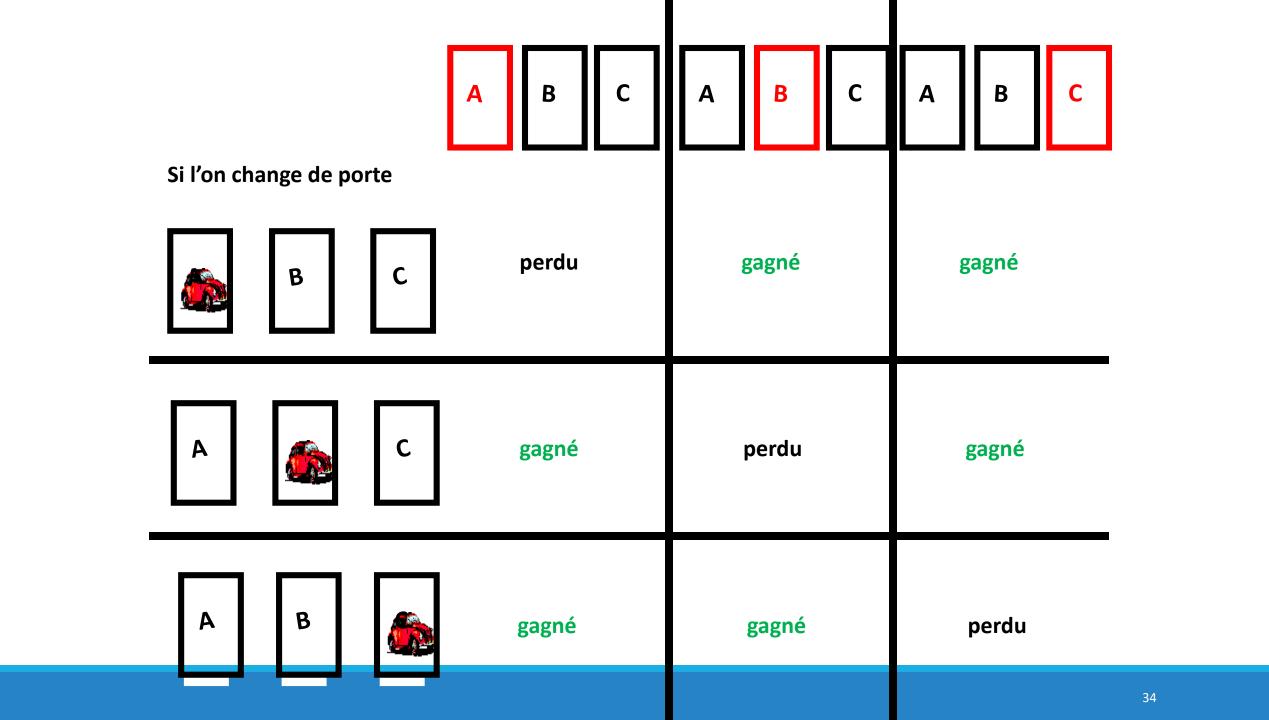
Stratégie garder la porte initiale :

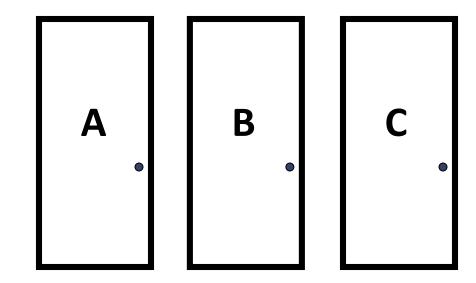
$$P(G) = 1 * 1/3 + 0 * 2/3 = 1/3$$

Stratégie changer de porte :

$$P(G) = 0 * 1/3 + 1 * 2/3 = 2/3$$







Le problème résumé en deux phrases :

- 2 fois sur 3 on choisit une chèvre au départ
- Dans ce cas on gagne en changeant de porte

Formule de Bayes

Soit $(A_i)_{i \in I}$ une famille d'événements formant une partition de Ω , c'està-dire avec $\bigcup A_i = \Omega$ et $A_i \cap A_j = \emptyset$ pour tout $i \neq j$.

Supposons de plus que $P(A_i) \neq 0$ pour tout i.

Alors,

$$P(A_i|A) = \frac{P(A|A_i)P(A_i)}{\sum_{j \in I} P(A|A_j)P(A_j)}$$

Formule de Bayes

Exemple avec $(A_i)_{i \in I} = (B, B^C)$. Alors,

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^{C})P(B^{C})}$$

On remarque que

$$P(A) = P(A|B)P(B) + P(A|B^C)P(B^C)$$

Indépendance

Soient (Ω, \mathcal{A}, P) un espace de probabilité et A et B deux événements aléatoires.

On dit que A et B sont indépendants si

$$P(A \cap B) = P(A)P(B)$$

On en déduit notamment que

$$P(A|B) = P(A)$$

Variables aléatoires

X est une variable aléatoire réelle si c'est une application de Ω dans $\mathbb R$.

$$X: \omega \in \Omega \to X(\omega) \in \mathbb{R}$$

Variables aléatoires

X est une variable aléatoire réelle si c'est une application de Ω dans $\mathbb R$.

$$X: \omega \in \Omega \to X(\omega) \in \mathbb{R}$$

Cette notion est capitale afin de généraliser l'étude des probabilités non seulement aux événements aléatoires mais aussi aux fonctions d'événements aléatoires.

Ex : $\Omega = \{pile, face\}$ et X = 1 euro si pile et 0 euros si face.

Lois de probabilité

Soient (Ω, \mathcal{A}, P) un espace de probabilité et X une variable aléatoire réelle (v.a.r) sur Ω .

On appelle loi de probabilité de X, notée P_X , l'application qui a toute partie A de $\mathbb R$ associe

$$P_X(A) = P(\{\omega \in \Omega : X(\omega) \in A\}) = P(X \in A)$$

Lois de probabilité

Soient (Ω, \mathcal{A}, P) un espace de probabilité et X une variable aléatoire réelle (v.a.r) sur Ω .

On appelle loi de probabilité de X, notée P_X , l'application qui a toute partie A de $\mathbb R$ associe

$$P_X(A) = P(\{\omega \in \Omega : X(\omega) \in A\}) = P(X \in A)$$

Dans la suite, on notera $P(\{\omega \in \Omega : X(\omega) = x\}) = P(X = x)$