Partiel du 6 novembre 2024 - Durée : 2h Correction

Exercice 1 Question de cours

- 1. Pour tout $k \in \{0, ..., n\}, x_k = a + k \frac{b-a}{n}$.
- 2. $[x_k, \alpha_k] \subset [a, b]$ et f est C^1 sur [a, b] donc sur $[x_k, \alpha_k]$. Soit $t \in [x_k, \alpha_k]$, on applique le théorème des accroissements finis sur cet intervalle, ainsi il existe $c_k \in]t, \alpha_k[$ tel que $f(\alpha_k) f(t) = f'(c_k)(\alpha_k t)$. On en déduit :

$$|f(t) - f(\alpha_k)| = |f'(c_k)| \times |t - \alpha_k| \le M_1 |t - \alpha_k|.$$

On applique de la même manière le théorème des accroissements finis sur $[\alpha_k, x_{k+1}]$, on obtient, pour tout $t \in [\alpha_k, x_{k+1}]$,

$$|f(t) - f(\alpha_k)| \le M_1 |t - \alpha_k|.$$

Par conséquent,

$$\left| \int_{x_k}^{\alpha_k} (f(t) - f(\alpha_k)) \, \mathrm{d}t \right| \le \int_{x_k}^{\alpha_k} |f(t) - f(\alpha_k)| \, \mathrm{d}t \le M_1 \int_{x_k}^{\alpha_k} |t - \alpha_k| \, \mathrm{d}t = M_1 \int_{x_k}^{\alpha_k} (\alpha_k - t) \, \mathrm{d}t$$

$$\le M_1 \left[\frac{-(\alpha_k - t)^2}{2} \right]_{x_k}^{\alpha_k}$$

$$\le \frac{M_1}{2} (\alpha_k - x_k)^2.$$

On montre de la même manière que :

$$\left| \int_{\alpha_k}^{x_{k+1}} (f(t) - f(\alpha_k)) \, \mathrm{d}t \right| \le \frac{M_1}{2} (x_{k+1} - \alpha_k)^2.$$

Ainsi:

$$\left| \int_{x_k}^{x_{k+1}} (f(t) - f(\alpha_k)) dt \right| = \left| \int_{x_k}^{\alpha_k} (f(t) - f(\alpha_k)) dt + \int_{\alpha_k}^{x_{k+1}} (f(t) - f(\alpha_k)) dt \right|$$

$$\leq \left| \int_{x_k}^{\alpha_k} (f(t) - f(\alpha_k)) dt \right| + \left| \int_{\alpha_k}^{x_{k+1}} (f(t) - f(\alpha_k)) dt \right|$$

$$\leq \frac{M_1}{2} \left[(\alpha_k - x_k)^2 + (x_{k+1} - \alpha_k)^2 \right].$$

Or pour tout $(a, b) \in (\mathbf{R}_{+})^{2}$, $(a + b)^{2} \ge a^{2} + b^{2}$, donc :

$$\left| \int_{x_k}^{x_{k+1}} (f(t) - f(\alpha_k)) dt \right| \le \frac{M_1}{2} \left[(\alpha_k - x_k) + (x_{k+1} - \alpha_k) \right]^2 = \frac{M_1}{2} (x_{k+1} - x_k)^2$$

$$\le \frac{M_1}{2} \left(\frac{b - a}{n} \right)^2 = M_1 \frac{(b - a)^2}{2n^2}.$$

3. Soit $k \in \{0, \dots, n-1\}$, on remarque que $\int_{x_k}^{x_{k+1}} f(\alpha_k) dt = f(\alpha_k)(x_{k+1} - x_k) = \frac{b-a}{n} f(\alpha_k)$. Ainsi:

$$\left| \int_{a}^{b} f(t) dt - \frac{b-a}{n} \sum_{k=0}^{n-1} f(\alpha_{k}) \right| = \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(t) dt - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(\alpha_{k}) dt \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} (f(t) - f(\alpha_{k})) dt \right|$$

$$\leq \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} |f(t) - f(\alpha_{k})| dt$$

$$\leq \sum_{k=0}^{n-1} M_{1} \frac{(b-a)^{2}}{2n^{2}} = n M_{1} \frac{(b-a)^{2}}{2n^{2}}$$

$$\leq M_{1} \frac{(b-a)^{2}}{2n}.$$

Exercice 2 Uniforme continuité

1. f est uniformément continue sur I si :

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall (x,y) \in I^2, \ |x-y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$$

2. f n'est pas uniformément continue sur I si :

$$\exists \varepsilon > 0, \ \forall \delta > 0, \ \exists (x,y) \in I^2, \ |x-y| < \delta \text{ et } |f(x) - f(y)| \ge \varepsilon.$$

3. Soit $\delta > 0$, $\left(\frac{1}{\delta} + \frac{\delta}{2}\right)^2 - \frac{1}{\delta^2} = \frac{\delta^2}{4} + 1$, or $\frac{\delta^2}{4} \ge 0$, donc:

$$\left(\frac{1}{\delta} + \frac{\delta}{2}\right)^2 - \frac{1}{\delta^2} \ge 1.$$

4. On va vérifier que la négation écrite à la question 2 est vraie pour la fonction g. Choisissons $\varepsilon=1$ et soit $\delta>0$. On pose $x=\frac{1}{\delta}+\frac{\delta}{2}$ et $y=\frac{1}{\delta}$, alors $|x-y|=\frac{\delta}{2}$. On en déduit que $|x-y|<\delta$ et :

$$|g(x) - g(y)| = \frac{\delta^2}{4} + 1 \ge 1.$$

Donc q n'est pas uniformément continue sur \mathbf{R} .

5. Notons $h: \mathbf{R} \to \mathbf{R}$, $x \mapsto x$. Montrons que h est uniformément continue. Soit $\varepsilon > 0$, posons $\delta = \varepsilon > 0$. Soit $(x, y) \in \mathbf{R}^2$ tel que $|x - y| < \delta$, alors:

$$|h(x) - h(y)| = |x - y| < \delta = \varepsilon.$$

Donc h est uniformément continue.

Or on a vu dans la question précédente que $g=h\times h$ n'est pas uniformément continue, par conséquent, le produit de deux fonctions uniformément continues n'est pas toujours uniformément continue.

Exercice 3 Calcul d'une intégrale

1. On calcule cette intégrale en faisant deux intégrations par parties successives.

$$\int_0^{\ln 2} u^2 e^u \, du = \left[u^2 e^u \right]_0^{\ln 2} - 2 \int_0^{\ln 2} u e^u \, du$$

$$= 2(\ln 2)^2 - 2 \left(\left[u e^u \right]_0^{\ln 2} - \int_0^{\ln 2} e^u \, du \right)$$

$$= 2(\ln 2)^2 - 2 \left(2 \ln 2 - (2 - 1) \right) = 2(\ln 2)^2 - 4 \ln 2 + 2$$

$$= 2(\ln 2 - 1)^2.$$

2. On fait un changement de variable en posant $u = \ln t$, alors $du = \frac{1}{t}dt = \frac{1}{e^u}dt$, ainsi :

$$\int_{1}^{2} (\ln t)^{2} dt = \int_{0}^{\ln 2} u^{2} e^{u} du = 2 \ln 2(\ln 2 - 2) + 2.$$

Exercice 4 Borne supérieure

1. f(0) = 0 et b > 0, ainsi $0 \in A$ et donc A est non vide.

De plus, par définition de A, pour tout $x \in A$, on a $x \leq b$, ce qui signifie que b est un majorant de A et donc A est non vide et majoré.

Par conséquent, A admet une borne supérieure.

2. a est la borne supérieure de A, donc il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers a. Comme f est continue, on en déduit que $f(x_n) \xrightarrow[n \to +\infty]{} f(a)$.

Mais, pour tout $n \in \mathbb{N}$, $x_n \in A$, ainsi, par définition de A, pour tout $n \in \mathbb{N}$, $f(x_n) = 0$, d'où, $f(x_n) \xrightarrow[n \to +\infty]{} 0$.

Par unicité de la limite, on a donc f(a) = 0.

3. a est la borne supérieure de A, c'est donc le plus petit des majorants de A, de plus, on a vu que b est un majorant de A, d'où $a \le b$.

Mais f(a) = 0 et $f(b) \neq 0$, ainsi $a \neq b$ et finalement, a < b.

4. Soit $x \in]a, b]$, supposons par l'absurde que f(x) = 0, alors, par définition de $A, x \in A$ ce qui contredit la définition de a qui est un majorant de A. On en déduit que $f(x) \neq 0$.

Exercice 5 Étude d'une suite

1. Soit $n \geq 2$, f_n est un polynôme donc f_n est dérivable sur \mathbf{R}_+ et, pour tout $x \in \mathbf{R}_+$, $f'_n(x) = nx^{n-1} + 1$.

Ainsi, pour tout $x \in \mathbf{R}_+$, $f'_n(x) > 0$.

On en déduit que f_n est strictement croissante sur \mathbf{R}_+ , comme elle est aussi continue sur \mathbf{R}_+ , f_n est une bijection de \mathbf{R}_+ sur $[f_n(0), \lim_{x\to +\infty} f_n(x)] = [-1, +\infty[$.

- 2. $0 \in [-1, +\infty[$ et $f_n : \mathbf{R}_+ \to [-1, +\infty[$ est une bijection, donc il existe un unique $u_n \in \mathbf{R}_+$ tel que $f_n(u_n) = 0$.
- 3. Soit $n \geq 2$, on remarque que $f_n(0) = -1 < 0$ et $f_n(1) = 1 > 0$, ainsi $0 \in]-1,1[$. Comme f_n est continue le théorème des valeurs intermédiaires nous assure que f_n s'annule sur $]0,1[\subset \mathbf{R}_+$ et on a montré qu'il y a un unique réel sur \mathbf{R}_+ où f_n s'annule, donc $u_n \in]0,1[$.

4. Soit $n \ge 2$, $f_n(u_{n+1}) = u_{n+1}^n + u_{n+1} - 1$. Or $f_{n+1}(u_{n+1}) = 0$, c'est-à-dire que $u_{n+1}^{n+1} + u_{n+1} - 1 = 0$, d'où :

$$f_n(u_{n+1}) = u_{n+1}^n - u_{n+1}^{n+1} = u_{n+1}^n (1 - u_{n+1}).$$

Comme $0 < u_{n+1} < 1$, on en déduit que $f_n(u_{n+1}) > 0$.

- 5. Soit $n \ge 2$, $f_n(u_n) = 0$ et $f_n(u_{n+1}) > 0$, ainsi $f_n(u_{n+1}) > f_n(u_n)$. Comme f_n est strictement croissante sur \mathbf{R}_+ , on en déduit que $u_{n+1} > u_n$.
- 6. La question précédente montre que la suite $(u_n)_{n\geq 2}$ est strictement croissante et, d'après la question 3, elle est aussi majorée. Donc $(u_n)_{n\geq 2}$ converge.
- 7. Notons ℓ la limite de la suite $(u_n)_{n\geq 2}$.

On a vu (question 3) que, pour tout $n \ge 2$, $0 < u_n < 1$, donc $0 \le \ell \le 1$.

Proposons deux méthodes pour conclure.

Méthode 1. $(u_n)_{n\geq 2}$ est croissante et converge vers ℓ donc, pour tout $n\geq 2$, $u_n\leq \ell$. Comme, pour tout $n\geq 2$, f_n est strictement croissante, on a aussi, pour tout $n\geq 2$, $f_n(u_n)\leq f_n(\ell)$.

Or, pour tout $n \geq 2$, $f_n(u_n) = 0$, on en déduit que, pour tout $n \geq 2$, $0 \leq \ell^n + \ell - 1$.

Si on suppose par l'absurde que $\ell \in [0,1[$, alors $\ell^n \xrightarrow[n \to +\infty]{} 0$, ainsi par passage à la limite dans l'inégalité précédente, on obtient : $0 \le \ell - 1$, ce qui contredit $\ell < 1$.

Donc $\ell = 1$.

<u>Méthode 2.</u> Supposons par l'absurde que $\ell \in [0,1[$, alors $\ln u_n \xrightarrow[n \to +\infty]{} \ln \ell < 0$ si $\ell \neq 0$ et $\ln u_n \xrightarrow[n \to +\infty]{} -\infty$ si $\ell = 0$. Ainsi $n \ln u_n \xrightarrow[n \to +\infty]{} -\infty$. On en déduit que :

$$u_n^n = e^{n \ln u_n} \xrightarrow[n \to +\infty]{} 0.$$

Or, pour tout $n \geq 2$, $u_n^n + u_n - 1 = 0$, d'où, par passage à la limite dans cette égalité, $\ell - 1 = 0$ ce qui est absurde.

Finalement, on a montré que $\ell = 1$.