TESTS D'HYPOTHÈSES

ED – PASS Lyon Est – 2025-2026

Dr. Nicolas ROMAIN-SCELLE

Question 1 (QCM) (Biostatistique, 2009)

Concernant le résultat des tests d'hypothèses, quels sont les énoncés vrais ?

- A. Si le test est statistiquement non significatif, on ne rejette pas H_0
- B. Si le test est statistiquement significatif, on ne rejette pas H_0
- C. Si le test est statistiquement significatif, on est certain que H_0 est fausse
- D. Si le test est statistiquement significatif, on est certain que H_1 est vraie
- E. Si le test est statistiquement non significatif, on est certain que H_1 est fausse

Concernant le résultat des tests d'hypothèses, quels sont les énoncés vrais ?

- A. Si le test est statistiquement non significatif, on ne rejette pas H_0
- B. Si le test est statistiquement significatif, on ne rejette pas H_0
- C. Si le test est statistiquement significatif, on est certain que H_0 est fausse
- D. Si le test est statistiquement significatif, on est certain que H_1 est vraie
- E. Si le test est statistiquement non significatif, on est certain que H_1 est fausse

La procédure de test ne vise qu'un seul objectif : rejeter l'hypothèse nulle avec un risque α prédéterminé de faire erreur

Aussi:

- On n'acquiert jamais de certitude sur la véracité de H_0 et H_1
- On ne prouve jamais H_0
- On ne prouve pas non plus H_1 : au mieux, on admet l'existence d'une différence, sans prouver que la différence estimée dans l'échantillon est la vraie différence théorique

Concernant les statistiques de test, quels sont les énoncés vrais ?

- A. Une statistique de test est une variable aléatoire
- B. Une statistique de test nécessite une hypothèse nulle pour être calculable
- C. Une statistique de test suit une loi de probabilité
- D. Une statistique de test estime une probabilité
- E. Une statistique de test est une mesure

Concernant les statistiques de test, quels sont les énoncés vrais ?

- A. Une statistique de test est une variable aléatoire
- B. Une statistique de test nécessite une hypothèse nulle pour être calculable
- C. Une statistique de test suit une loi de probabilité
- D. Une statistique de test estime une probabilité
- E. Une statistique de test est une mesure

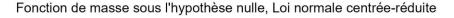
La statistique de test

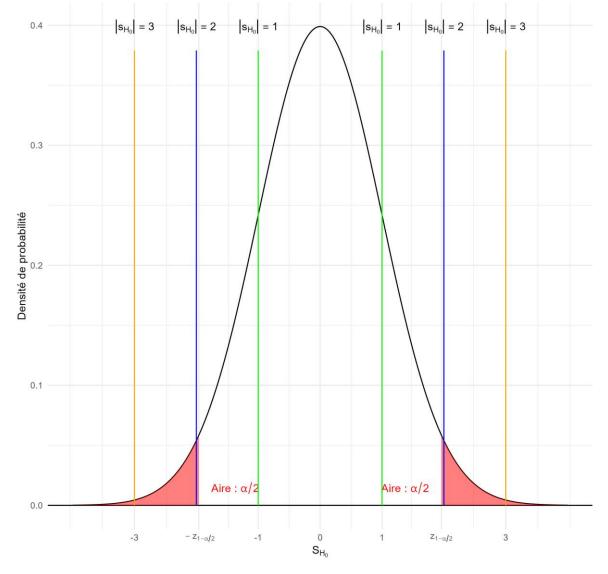
- De façon générale, on note $S \sim \mathcal{L}(\theta)$ une statistique de test, suivant une loi \mathcal{L} non spécifié de paramètre θ .
- θ correspond à une vraie valeur, **non connue**, à laquelle on va comparer l'estimation issue de l'expérience t
- Sous H_0 : $\theta = \theta_0$ avec θ_0 une valeur **connue ou estimable**
- Donc $s_{H_0}^{obs} = f(\theta_0, t)$ est désormais calculable : θ_0 est connu et T permet d'obtenir l'estimation t depuis l'échantillon
- S est **par définition** une mesure : elle est construite pour mesurer l'écart entre le résultat d'une réalisation de l'expérience sous H_0 et l'espérance de l'expérience sous H_0 . Elle n'est pas une probabilité.

- Vous participez à un jeu de pile ou face contre un adversaire. L'adversaire vous propose trois pièces (verte, bleue, orange) pour jouer. On définit X la variable aléatoire suivant une loi de Bernoulli de paramètre π caractérisant le résultat d'un lancer : X(Pile) = 1 et X(Face) = 0.
- Pour chaque pièce, vous réalisez l'expérience suivante: la pièce est lancée 10 fois et vous réalisez un test statistique en prenant les hypothèses suivantes : H_0 : $\pi = 0.5$ et H_1 : $\pi \neq 0.5$
- Vous obtenez les résultats suivants pour les valeurs de la statistique de test: $s_v = 1$ pour la pièce verte, $s_b = 2$ pour la pièce bleue et $s_o = 3$ pour la pièce orange. La figure suivante représente la distribution de la statistique de test S sur laquelle vous avez ajouté les 3 valeurs s_b , s_v et s_o ainsi que le risque alpha :

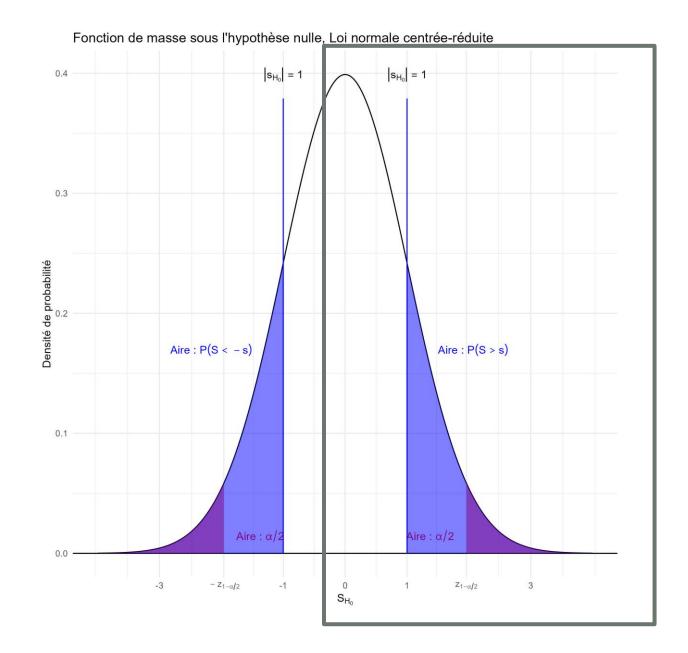
Quels énoncés sont corrects parmi les suivants :

- A. La p-value du test sur la pièce verte est supérieure au seuil de rejet
- B. La p-value du test sur la pièce bleue est supérieure au risque α
- C. La p-value du test sur la pièce orange est inférieure à celle du test sur la pièce verte
- La pièce orange est la plus désirable pour obtenir un jeu équilibré
- E. La pièce bleue est la plus désirable pour obtenir un jeu équilibré



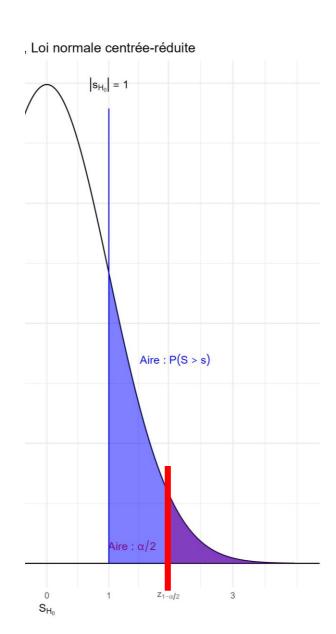


Rappel (exemple à droite)



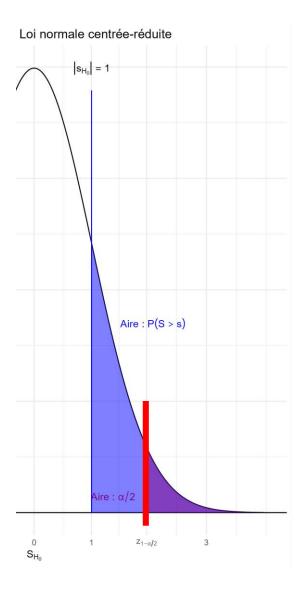
Rappel (exemple à droite)

- Le risque α est l'aire définie par l'axe des abscisses en bas, la densité de probabilité en haut, et le seuil de rejet à gauche
- La p-value est l'aire définie comme le risque α en haut et en bas, mais par la statistique de test calculée à gauche



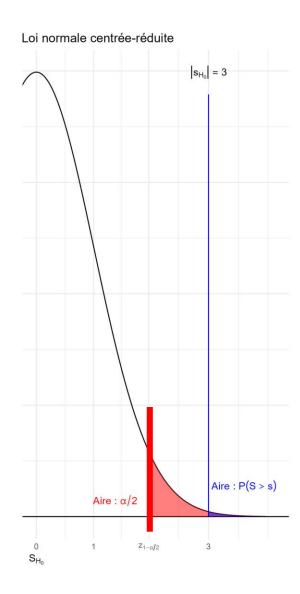
Rappel (exemple à droite)

 Si la statistique de test est inférieure en valeur absolue au seuil de rejet, alors la p-value est supérieure au risque α

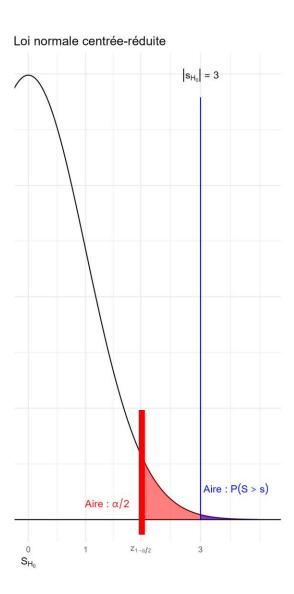


Rappel (exemple à droite)

- Si la statistique de test est inférieure en valeur absolue au seuil de rejet, alors la p-value est supérieure au risque α
- Si la statistique de test est supérieure en valeur absolue au seuil de rejet, alors la p-value est inférieure au risque α

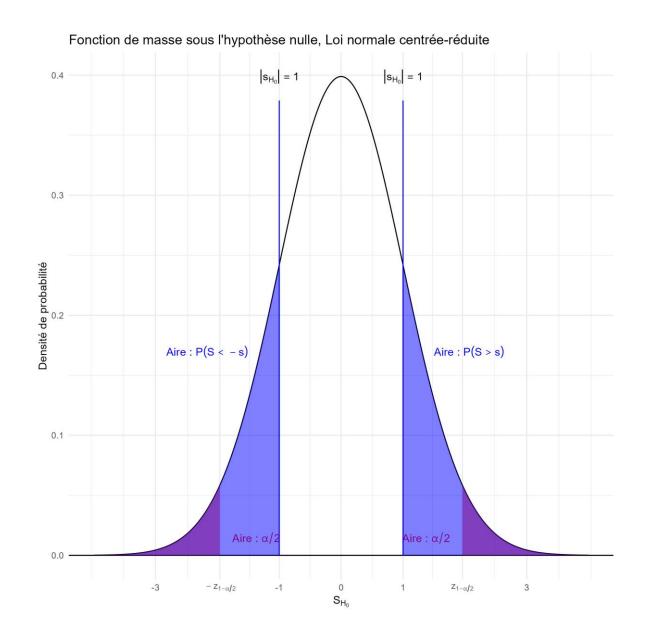


On ne compare pas p-value avec le seuil de rejet, ou la statistique de test avec le risque α directement



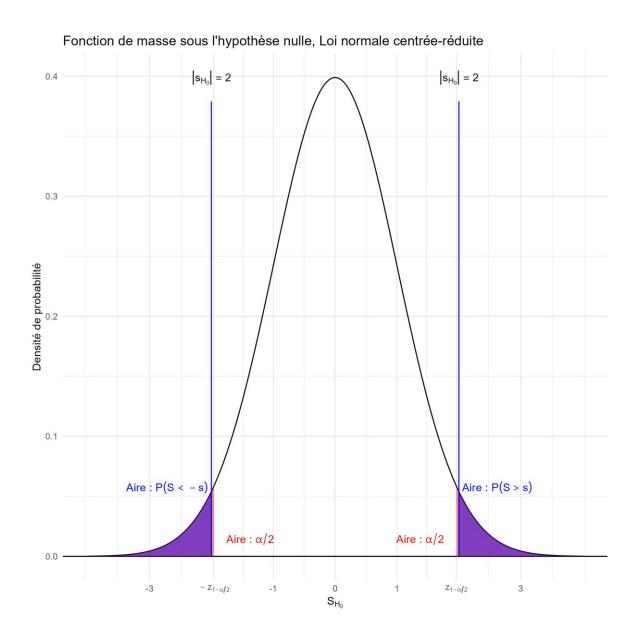
$$|s_{H_0}|=1$$

- La p-value (aire bleue)
 est supérieure au risque
 α (aire rouge)
- La statistique de test est inférieure en valeur absolue au seuil de rejet
- Le test n'est pas concluant : on ne rejette pas l'hypothèse nulle



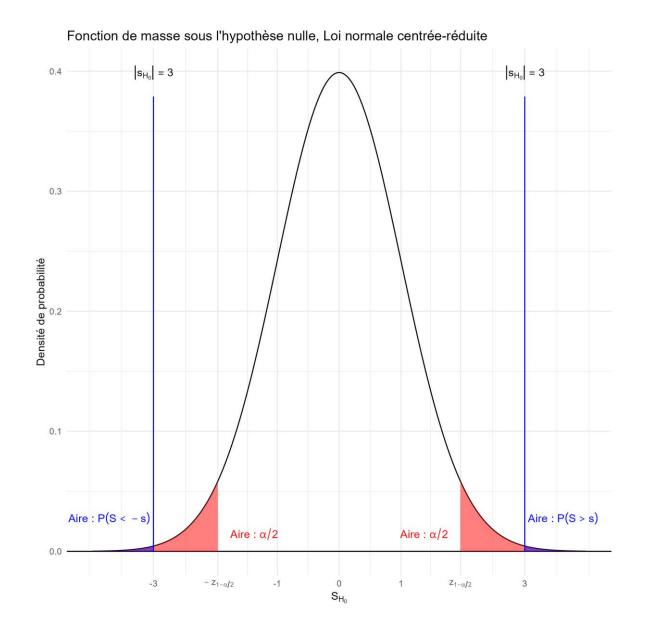
$$|s_{H_0}|=2$$

- La p-value (aire bleue)
 est inférieure au risque
 α (aire rouge)
- La statistique de test est supérieure en valeur absolue au seuil de rejet
- Le test est concluant :
 on rejette l'hypothèse
 nulle avec un risque α
 de faire erreur



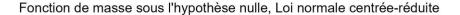
$$|s_{H_0}|=3$$

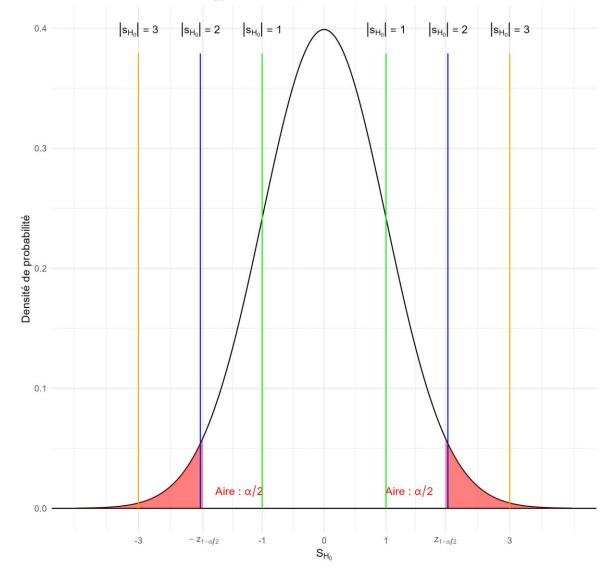
- La p-value (aire bleue)
 est inférieure au risque
 α (aire rouge)
- La statistique de test est supérieure en valeur absolue au seuil de rejet
- Le test est concluant :
 on rejette l'hypothèse
 nulle avec un risque α
 de faire erreur



Quels énoncés sont corrects parmi les suivants :

- A. La p-value du test sur la pièce verte est supérieur au seuil de rejet
- B. La p-value du test sur la pièce bleue est supérieure au risque *α*
- C. La p-value du test sur la pièce orange est inférieure à celle du test sur la pièce verte
- La pièce orange est la plus désirable pour obtenir un jeu équilibré
- E. La pièce bleue est la plus désirable pour obtenir un jeu équilibré





• Vous êtes sollicités pour réaliser un test du χ^2 sur la table de contingence suivante, croisant deux variables catégorielles X et Y mesurées sur un échantillon. Donnez le nombre de degrés de liberté du test.

Observé	y = A	y = B	y = C	
x = 1	39	9	39	87
x = 2	37	26	29	92
x = 3	19	4	45	68
x = 4	17	49	44	110
x = 5	18	8	49	75
	130	96	206	432

Les **distributions marginales** de *x* et *y* sont fixes (cellules rouges)

La distribution conditionnelle de x sachant y (et de y sachant x) est aléatoire.

On cherche à savoir à partir de combien de cellules bleues remplies l'ensemble du tableau est connu

Observé	y = A	y = B	y = C	
x = 1	?	?	?	87
x = 2	?	?	?	92
x = 3	?	?	?	68
x = 4	?	?	?	110
x = 5	?	?	?	75
	130	96	206	432

- Le test du χ^2 pour cette table vise à rechercher une différence de distribution entre 2 variables catégorielles à plus de 2 modalités.
- Sous H_0 , on va varier les effectifs **conditionnels** uniquement, les effectifs **marginaux** étant considérés comme fixes.

Observé	y = A	y = B	y = C	
x = 1	39	9	39	87
x = 2	37	26	29	92
x = 3	19	4	45	68
x = 4	17	49	44	110
x = 5	18	8	49	75
	130	96	206	432

- On doit déterminer le nombre de modalités de chaque variable
 - Pour X : I = 5 modalités $\{1,2,3,4,5\} =$ **Nombre de lignes** (hors total)
 - Pour Y : J = 3 modalités {A,B,C} => Nombre de colonnes (hors total)

- On détermine également le nombre de contraintes s'exerçant sur chaque variable :
 - Sur X : 1 contrainte : total des effectifs par modalités (dernière colonne)
 - Sur Y : 1 contrainte : total des effectifs par modalités (dernière ligne)

- Exemple : pour la première ligne (x = 1)
 - L'égalité $O_{x=1,y=A} + O_{x=1,y=B} + O_{x=1,y=C} = O_{x=1} = 39$ est toujours vraie
 - Donc: $O_{x=1,y=A} = 39 O_{x=1,y=B} + O_{x=1,y=C}$
- L'extension de cette logique pour une table de contingence du test du χ^2 conduit à la formule :

$$(I-1)\times(J-1)$$

• Avec I = 5 et J = 3: $(5-1) \times (3-1) = 8 ddl$

A l'issue d'un essai clinique visant à comparer l'effet d'un nouveau traitement A à un traitement de référence B sur la mortalité à 1 an, vous disposez des résultats suivants : 53 patients sous A sont décédés, 68 sous B sont décédés, avec 144 patients traités par A et 147 patients traités par B.

On fixe
$$\alpha = 0.025$$
, H_0 : $\pi_A = \pi_B = \pi_0$ et H_1 : $\pi_A \neq \pi_B \neq \pi_0$

Quels sont les énoncés corrects parmi les suivants ?

- A. L'écart entre la statistique du test du Chi-deux calculée et le seuil de rejet associé est supérieur à 1 en valeur absolue
- B. L'écart entre la statistique du test du Chi-deux calculée et le seuil de rejet associé est supérieur à 3 en valeur absolue
- C. Sous l'hypothèse nulle, on attend entre 59 et 60 décès dans le groupe A
- D. On rejette l'hypothèse nulle au risque α
- E. On ne rejette pas l'hypothèse nulle au risque α

On pose les hypothèses :

$$H_0: \pi_A = \pi_B = \pi_0$$

 $H_1: \pi_A \neq \pi_B \neq \pi_0$

Avec π_i la vraie proportion de décédés dans les groupes.

Sous l'hypothèse nulle

Estimation de π_0 : $f_0 = \frac{121}{291} \cong 0.42$

Obs.	A	В	
Décédé	53	68	121
Vivant	91	79	170
	144	147	291

Sous H_0	A	В	
Décédé	59,9	61,1	121
Vivant	84,1	85,9	170
	144	147	291

Conditions d'applications

Sous H ₀	A	В	
Décédé	$n_A f_0 = 59.9 > 5$	$n_B f_0 = 61,1 > 5$	121
Vivant	$n_A(1 - f_0) = 84,1 > 5$	$n_B(1 - f_0) = 85.9 > 5$	170
	144	147	n = 291

Les conditions d'application du test du ${f Chi ext{-}deux}$ sont vérifiées dans la table de contingence ${f sous}$ ${f H}_0$

Statistique de test

$$s_{H_0}^{obs} = \sum_{i=1}^{I=2} \sum_{j=1}^{J=2} \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}} \cong 2,68$$

•
$$\alpha = 0.025$$
 donc $q_{1-\alpha}^{\chi^2} \cong 5.02$

On ne rejette pas H₀

• 5,02 - 2,30 > 1 donc **A vraie** mais 5,02 - 2,30 < 3 donc **B fausse**

Statistique de test corrigée comparée au support présenté en séance : 2,30 -> 2,68

A l'issue d'un essai clinique visant à comparer l'effet un nouveau traitement A à un traitement de référence B sur la mortalité à 1 an, vous disposez des résultats suivants : 53 patients sous A sont décédés, 68 sous B sont décédés, avec 144 patients traités par A et 147 patients traités par B.

On fixe
$$\alpha = 0.025$$
, H_0 : $\pi_A = \pi_B = \pi_0$ et H_1 : $\pi_A \neq \pi_B \neq \pi_0$

Quels sont les énoncés corrects parmi les suivants ?

- A. L'écart entre la statistique du test du Chi-deux et le seuil de rejet associé est supérieur à 1 en valeur absolue
- B. L'écart entre la statistique du test du Chi-deux et le seuil de rejet associé est supérieur à 3 en valeur absolue
- C. Sous l'hypothèse nulle, on attend entre 59 et 60 décès dans le groupe A
- D. On rejette l'hypothèse nulle au risque α
- E. On ne rejette pas l'hypothèse nulle au risque α