Changement de variable

Le plus important des changement de variables est le changement d'échelles. Si $\lambda > 0$, quelle est la valeur de

$$\int_{-\infty}^{+\infty} f(\lambda x) dx?$$

(Plus dur) si X suit une loi de densité f sur $\mathbb R$ quelle est la loi de λX ? de X+3?

Exercice 1. Sans calculer les intégrales, montrer que

$$\int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n x dx.$$

https://www.youtube.com/watch?v = qdUaqxk3B2s

Exercice 2. Calculer les primitives suivantes par changement de variable.

- 1. $\int (\cos x)^{1234} \sin x \, dx$
- $2. \int \frac{1}{x \ln x} \, dx$
- $3. \int \frac{1}{3 + \exp(-x)} dx$

Indications 2. 1. $\int \cos^{1234} x \sin x \, dx = -\frac{1}{1235} \cos^{1235} x + c$ (changement de variable $u = \cos x$)

- 2. $\int \frac{1}{x \ln x} dx = \ln |\ln x| + c \text{ (changement de variable } u = \ln x)$ 3. $\int \frac{1}{3 + \exp(-x)} dx = \frac{1}{3} \ln (3 \exp x + 1) + c \text{ (changement de variable } u = \exp x)$

1. $\int (\cos x)^{1234} \sin x \, dx$ Correction 2.

> En posant le changement de variable $u = \cos x$ on a $x = \arccos u$ et $du = -\sin x \, dx$ et on obtient

$$\int (\cos x)^{1234} \sin x \, dx = \int u^{1234} (-du) = -\frac{1}{1235} u^{1235} + c = -\frac{1}{1235} (\cos x)^{1235} + c$$

Cette primitive est définie sur \mathbb{R} .

 $2. \int \frac{1}{x \ln x} \, dx$

En posant le changement de variable $u=\ln x$ on a $x=\exp u$ et $du=\frac{dx}{x}$ on écrit :

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{\ln x} \frac{dx}{x} = \int \frac{1}{u} du = \ln|u| + c = \ln|\ln x| + c$$

Cette primitive est définie sur]0,1[ou sur $]1,+\infty[$ (la constante peut être différente pour chacun des intervalles).

3. $\int \frac{1}{3+\exp(-x)} dx$ Soit le changement de variable $u=\exp x$. Alors $x=\ln u$ et $du=\exp x\, dx$ ce qui s'écrit aussi

$$\int \frac{1}{3 + \exp(-x)} dx = \int \frac{1}{3 + \frac{1}{u}} \frac{du}{u} = \int \frac{1}{3u + 1} du = \frac{1}{3} \ln|3u + 1| + c = \frac{1}{3} \ln(3 \exp x + 1) + c$$

Cette primitive est définie sur \mathbb{R} .