SMA

S5A FISE/FISA
Maxime MORGE
2025-2026

; ’ POLYTECH’ TP n°2. Programmation multi-agents

LYON

Ce guide de programmation présente le langage NetLogo en détail pour concevoir vos propres simulations
multi-agents.

Exercice 1: Les agents

Les agents sont des entités qui exécutent desinstructions. On distingue 4 types d’agents : les tortues (turtles),
les tuiles (patches), les liens (links) et 'observateur (observer). Les tortues sont des agents qui se déplacent dans
I'environnement. L'environnement, qui est bidimensionnel, est divisé en une grille de tuiles. Chaque tuile est
un carré de « terrain » sur lequel les tortues peuvent se déplacer. Les liens sont des agents qui relient deux
tortues. L'observateur nest pas situé. Il supervise les tortues et les tuiles en leur transmettant des instructions.
Dans I'état inital, il n'y a pas de tortues. L'observateur peut créer de nouvelles tortues. Les tuiles peuvent éga-
lement créer de nouvelles tortues. Bien qu’elles soient immobiles, les tuiles peuvent également exécuter des
instructions.

Q1. Les tuiles ont des coordonnées. Par défaut, la tuile aux coordonnées (0,0) est appelé l'origine. Les coordon-
nées des autres tuiles correspondent aux distances horizontales et verticales par rapport a celle-ci. Les coor-
données d’une tuile sont appelées pxcor et pycor. Quand vous vous déplacez vers la droite pxcor augmente.
vous vous déplacez vers le haut, pycor augmente. Le nombre total de tuiles est déterminé par les paramétres
min-pxcor, max-pxcor, min-pycor et max-pycor.

Q1.1. Démarrez NetLogo.
Q1.2. Cliquez sur le bouton Settings. .. dans l'onglet Interface.

Q1.3. Quelles sont les valeurs initiales de min-pxcor, max-pxcor, min-pycor et max-pycor ? Combien y a-t-il
de tuiles?

Q1.4. Créez une grille de 10 x 5 tuiles.

Q2. Les tortues ont également des coordonnées : xcor et ycor. Alors que les coordonnées d’une tuile sont
toujours des entiéres, celles d'une tortue peuvent étre des réels.

Q2.1. Créez 1 tortues dans chaque coin,via le centre de commande.

create-turtles 1 [setxy 0 0]
create-turtles 1 [setxy 9 0]
create-turtles 1 [setxy 0 4]
create-turtles 1 [setxy 9 4]

Q3. Les liens n‘ont pas de coordonnées. Chaque lien a deux extrémités, et chaque extrémité est une tortue.
Si l'une des tortues meurt, le lien meurt aussi. Un lien est représenté visuellement comme une ligne reliant les
deux tortues.

Q3.1. Créez un graphe de connexion complet via la commande
E\ turtles [create-links-with other turtles].

Exercice 2 : Les procédures

Les commandes et les rapporteurs (reports) sont des instructions qui s'adressent aux agents. Une com-
mande est une instruction qui doit étre exécutée par un agent. Un rapporteur est une instruction qui retourne
une valeur. Alors qu’'une commande est préfixée par un verbe d’action (create, die, jump, inspect ou clear),un
rapporteur est généralement un nom ou une expression nominale. Les commandes et rapporteurs du langage
NetLogo, qui sont appelés primitives, sont répertoriés dans un dictionnaire.

Q1. Les commandes et les rapporteurs que vous définissez sont appelés des procédures. Chaque procédure
a un nom, précédé du mot-clé to pour les procédures de commande et to-report pour les procédures de
1sur9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

rapporteur. Le mot-clé end marque la fin de la procédure. Les commandes et rapporteurs peuvent avoir des
arguments.

Q1.1. Créez un nouveau modele.
Q1.2. Ajoutez un bouton setup et un bouton go.

Q1.3. Ajoutez les 2 procédures suivantes :

to setup ;; Définir une procédure intitulée setup
clear-all 7, Réinitialiser 1'environnement
create-turtles 10 :: Créer 10 tortues sur la tuile 0,0
[setxy random-xcor random-ycor] ;; Déplacer aléatoirement chaque tortue
reset-ticks ;; Redémarrer 1l'horloge
end Terminer la définition de la procédure
to go
ask turtles [Demander aux tortues d'exécuter les commandes
fd 1 avance (forward) d'un pas
rt random 10 tourne a droite (right turn) aléatoirement
1t random 10 tourne a gauche (left turn) aléatoirement
1
tick Incrémenter le tic d'horloge
end
Notez que :

— setup et go sont des procédures de commande définies par l'utilisateur;

— clear-all, create-turtles, reset-ticks, ask, 1t, rt et tick sont des commandes primitives;

— random et turtles sont des rapporteurs primitifs. random retourne un entier aléatoire inférieur a son
argument (ici entre 0 et 9). turtles rapporte I'ensemble de toutes les tortues;

— les commandes clear-all et create-turtles ne peuvent étre exécutées que par l'observateur alors
que la commande fd ne peut étre exécutée que par les tortues. La commande tick peut étre exécutée
par différents types d’agents.

Q1.4. Configurez et exécutez le modele.
Q2. Les procédures peuvent avoir des arguments.

Q2.1. Modifiez la procédure go pour qu’elle appelle une autre procédure :

to go
ask turtles [
draw-polygon 8 who
1
tick
end

to draw-polygon [num-sides len]
pen-down
repeat num-sides [
fd len
rt 360 / num-sides

]

end

Q2.2. Configurez et exécutez le modéle.

Q3. Définissez votre propre rapporteur.

Demander aux tortues d'exécuter
dessinez un octogone dont la longueur
des cbtés est égale a son numéro
Incrémenter le tic d'horloge

Dessiner un polygdne
baisser crayon

pour chaque cété
dessiner un coté
tourner a droite

Q3.1. Modifiez la procédure go pour qu’elle utilise un rapporteur :

2sur9

to draw-polygon [num-sides len] ;+ Dessiner un polygbne

pen-down ;+ baisser crayon
repeat num-sides [;7 pour chaque coté
fd len ;. dessiner un coté
rt 360 / num-sides ;; tourner a droite
set label absolute-value xcor ;+ affichez |xcor|
1
end
to-report absolute-value [number] ;; Retourner la valeur assolue d'un nombre
ifelse number >= 0 ;7 si le nombre est positif
[report number] ;7 retourner le nombre
[report (- number)] ;7 sinon son opposé
end

Q3.2. Configurez et exécutez le modeéle.

Exercice 3 : Les variables

Les variables d'agent permettent de stocker des valeurs pour chaque agent. Une variable d’agent peut étre
une variable globale, une variable de tortue, une variable de tuile ou une variable de lien. Les variables globales
appartiennent a l'observateur : il ny a qu’une seule valeur a laquelle chaque agent peut y accéder. Pour une
variable de tortue, chaque tortue a sa propre valeur pour cette variable. Il en va de méme pour les variables
de tuile et de lien.

Q1. Toutes les tortues et tous les liens ont une variable définie par défaut color alors que toutes les tuiles ont
une variable pcolor.

Q1.1. Configurez le modeéle.

Q1.2. Demandez a toutes les tortues de changer pour la couleur rouge.

La liste des variables d’agent par défaut est disponible ici. Par exemple, xcor, ycor et heading (qui indique
la direction vers laquelle la tortue est tournée) sont des variables de tortue alors que pxcor et pycor sont des
variables de tuile.

Q2. Vous allez définir votre propre variable.
Q2.1.Créez unevariable globale en utilisant le mot-clé globals au début de votre code, e.g. globals [nbPolygon].
Q2.2. Modifiez votre code pour incrémenter cette variable quand un nouveau polygone est tracé.

Q2.3. Dans l'onglet Interface, ajoutez un moniteur pour afficher la valeur de cette variable au cours de la
simulation.

Q2.4. Configurez et exécutez le modele.

Q3. Pour définir des variables de tortue, de tuile et ou de lien, utilisez les mots-clés turtles-own, patches-own
et 1links-own.

Q3.1. Créez une variables de tortue intitulée eloignement qui représente la distance entre la tortue et l'ori-
gine puis affichez la sous la tortue a chaque tic.

Q3.2. Configurez et exécutez le modéle.

Q4. Les variables globales sont accessibles a tout moment par n‘importe quel agent. De méme, une tortue peut
lire et modifier les variables de la tuile sur laquelle elle se trouve.

Q4.1. Changez la couleur de la tuile a chaque angle de chaque octogone.
Q4.2. Configurez et exécutez le modele.
Q5. Pour lire la valeur d’un variable d'un autre agent, utilisez le mot-clé of.

Q5.1. Dans la centre de commande, saisissez shioly [color] of turtle 5puis [xcor + ycor] of turtle

3sur9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html#builtinvariables

Q6. Pour créer une variable locale a une procédure, utilisez la commande let. au début de la procédure.

Q6.1. Ajoutez la procédure suivante :

to swap-colors [turtlel turtle2] ;+ Echanger la couleur de 2 tortues
let temp [color] of turtlel ;; definir une variable locale
ask turtlel [set color [color] of turtle2] ;; modifier la couleur d'une tortue
ask turtle2 [set color temp] ;7 puis de l'autre

end

Q6.2. Modifiez la procédure go pour que a chaque tic d’horloge, 2 tortues choisies aléatoirement échangent
de couleur (one-of agentset rapporte de maniére aléatoire un agent).

Q6.3. Configurez et exécutez le modele.

Exercice 4 : Tic d’horloge

Dans la plupart des modeéles, le temps est discrétisé en tics d’horloge (ticks). Affiché au-dessus de la vue,
le compteur de tics est accessible depuis le code grace au rapporteur primitif ticks. La commande primitive
tick incrémente ce compteur alors que clear-all le réinitialise comme tout le reste. Utilisez la commande
reset-ticks au terme de la configuration pour démarrer le compteur.

Q1. Modifiez la procédure go pour que les tortues dessinent en alternance des carrés et des octogones.

Exercice 5: La commande

La commande permet d'adresser des instructions aux tortues (turtles), aux tuiles (patches) et aux liens
(1ink).

Tout le code a exécuter par les tortues doit étre situé dans un « contexte » de tortue. Vous pouvez établir
un contexte de tortue :

1. dans un bouton, en choisissant turtles dans le menu contextuel. Le code que vous placez dans le bou-
ton sera exécuté par toutes les tortues;

2. dans le centre de commande, en choisissant turtles dans le menu contextuel. Toutes les commandes
que vous saisissez seront exécutées par toutes les tortues;

3. en utilisant les commandes turtles, Haltlch, ou d’autres commandes qui établissent un contexte de
tortues.

Il en va de méme pour les tuiles, les liens et I'observateur, sauf que vous ne pouvez pas utiliser la commande
E\ avec l'observateur. Le code qui n’est pas a I'intérieur d'une commande s'adresse a |'observateur.

Un agentset est un ensemble d'agents qui peut contenir des tortues, des tuiles ou des liens, mais pas plus
d’un type a la fois. Par exemple la primitive \HE\ contient I'ensemble de toutes les tortues, alors que EE\\E\
contient toutes les tuiles et 1 ﬂ\ tous les liens. Pour éviter les biais de simulation, I'ordre des agents dans un
agentset est par défaut aléatoire et différent a chaque fois que vous l'utilisez. Par conséquence les instructions
transmises par lacommande sont exécutées par les membres de I'agentset dans un ordre aléatoire. Si vous
souhaitez que vos agents réalisent des instructions selon un ordre déterminé, utilisez une liste des agents.

Q1. Voici un exemple de l'utilisation de la commande E\E dans une procédure :

to setup

clear-all

create-turtles 100 ;7 créer de maniere pseudo-aléatoire 100 tortues
ask turtles

[set color red ;+ changer la couleur des tortues

fd 50] ;7 avance (forward) de 50 pas

ask patches

[if pxcor > 0 ;7 sl la tuile est a droite de la vue

[set pcolor green] 1 ;; alors changer la couleur

reset-ticks
end
4sur9

Quel est le resultat de ce code?
Q1.1. Dans le menu File, créez un nouveau modele (New).
Q1.2. Dans I'onglet Interface, créez un bouton intitulé Configurer qui exécute la procédure setup.
Q1.3. Dans l'onglet Code, copiez le code de la procédure setup.

Q1.4. Retournez dans l'onglet Interface et configurez votre modeéle. Qu'est-ce que vous observez dans la
vue?

Q1.5. Dans le menu File, enregistrez votre modéele (Save).

Vous pouvez également utiliser la commande EHE pour vous adresser individuellement aux tortues, aux
tuiles ou aux liens pour exécuter des commandes en utilisant les primitives \tﬂu‘rﬂt‘le{, p‘aﬂtﬂch lﬂi‘nﬂk‘ et ‘pﬂa‘tﬂchﬂ-‘aﬂt‘
comme dans I'exemple suivant :

’

to setup
clear-all
crt 3 ;; crée 3 tortues
ask turtle 0 ;; dit a la premieére...
[fd 1] ;: ...avance
ask turtle 1 ;; dit a la seconde...
[set color green] ;; ...devient vert
ask turtle 2 ;; dit a la troisieme...
[rt 90] :: ...tourne a droite
ask patch 2 -2 ;; demande a la tuile (2,-2)...
[set pcolor blue] ;; ...devient bleu
ask turtle 0 ;; demande a la premiéere tortue...
[ask patch-at 1 0 ;7 ...de demander a la tuile a l'est
[set pcolor red] 1] ;7 ...de devenir rouge
ask turtle 0 ;; demande a la premiére tortue...
[create-link-with turtle 1] ;; ...de créer un lien avec la seconde
ask link 0 1 ;; demande a ce lien
[set color blue] ;; ...de devenir bleu
reset-ticks
end

La primitive tr{tlle prend en argument un entier, i.e. le numéro de la tortue. La primitive paltich prend en
argument les valeurs de coordonnées de la tuile, i.e. px r\ et ‘pﬂy‘cﬂoﬂr‘. La primitive prend en argument les

numéros des deux tortues qu'il relie. La primitive ‘pﬂaﬂt‘cﬂh t‘ prend en argument les distances vis-a-vis de la tortue
dans les directions x et y. Par exemple, la procédure @slk turtle 0 [ask patch-at 1 0 [...]]1demande
a la tortue numéro 0 de s’adresser a la tuile a I'est d’elle-méme.

@)

1
Q

Q1.6. Dans l'onglet Code, copiez le code de la procédure setup.

Q1.7. Retournez dans l'onglet Interface et configurez votre modéle. Qu'est-ce que vous observez dans la
vue?

Quand vous adressez un ensemble de commandes a un ensemble d’agents, chaque agent exécute toutes
les commandes, puis I'agent suivant les exécute toutes, etc. si vous écrivez :

turtles

[fd 1
set color red]

D’abord une tortue avance et devient rouge, puis une autre tortue avance et devient rouge, etc. Si vous |'écrivez
de cette maniére :

ask turtles [fd 1]
ask turtles [set color red]

D’abord toutes les tortues avancent, ensuite elles deviennent rouge.

Ssur9

Exercice 6 : La primitive E\EHE

La primitive dgenjtiselt permet de construire des ensembles d’agents qui contiennent certaines tortues, cer-
taines tuiles ou certains liens, e.g toutes les tortues rouges, les tuiles dont la coordonnée pxcor est divisible par
cing, ou les tortues du premier quadrant qui sont sur une tuile verte ou connectées a la tortue numéro 0. Vous
pouvez alors vous adresser a cet ensemble avec la commande E\ﬁ Une autre fagon de procéder pour créer un
ensemble de tortues consiste a utiliser les primitives :

— [tulr|tlllels]-helrle] avec les tortues sur une tuile;

— tuﬂrﬂ els-jait| avec les tortues sur une autre tuile situées a des distances x et y;

— tﬂkﬂ e's|-lon avec les tortues situées sur une autre tuile ou sur un ensemble de tuiles, voire sur la méme

tuile qu’une tortue ou un ensemble de tortues.

Q1. Commentez les ensembles d'agents dans le code suivant :

;7 Toutes les autres tortues a l'exception de celle-ci
other turtles

other turtles-here

turtles with [color = red]

turtles-here with [color

red]

é;tches with [pxcor > 0]

é&rtles in-radius 3

éétches at-points [[1 0] [0 1] [-1 0] [0 -11]
Aéighbors4

é&rtles with [(xcor > 0) and (ycor > 0)

and (pcolor = green)]

é&rtles—on neighbors4

[my-links] of turtle 0

Q2. Pour un ensemble d’agents, vous pouvez utiliser les commandes :
alsk qui adresse des instructions aux agents;

V17| qui retourne faux si I'ensemble est vide;

117l qui teste une condition sur tous les agents de I'ensemble;
{ nt\ qui retourne le nombre d'agents dans I'ensemble.

alECHEYEREY]

S
il
1
o

Q2.1. Configurez votre modeéle.

Q2.2. Dans le centre de commande, saisissez I'instruction E\ one-of turtles [set color blue].Quel
est le résultat?

Q2.3. Saisissez I'instruction sk one-of patches [sprout 1]. Répétez cette instruction. Quel est le ré-
sultat? Pour plus de détail consultez la documentation™.

Q2.4. Saisissez I'instruction EHH max-one-of turtles [xcor] [die].Répétez cette instruction. Quel est
le résultat?

Q2.5. Saisissez l'instruction \EM mean [xcor] of turtles. Quel est le résultat?
Les ensembles no-turtles, no-patches et no-links sont vides. L'égalité entre des ensembles d’agents peut
étre testé avec les opérateurs = et !=. Si un agent est membre d'un ensemble, member? retourne vrai.

1. https://ccl.northwestern.edu/netlogo/docs/dictionary.html#sprout

6 sur9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html#sprout

Exercice 7 : Ensembles spéciaux d’agents

Les ensembles d’agents ‘tﬂu‘rﬂtﬂl‘eﬂs‘ et \lﬂi‘nﬂk‘s\ ont un comportement spécial, car ils contiennent toujours les
ensembles de toutes les tortues et de tous les liens. Par conséquent, ces ensembles peuvent croftre.

Q1. Dans l'onglet Code, déclarez la variable globale g gréce a I'instruction globals [g 1. Dans le centre de
commande, saisissez les commandes suivantes et notez les valeurs de retour. Comment interprétez-vous ces
résultats?

observer>
observer>
observer>
observer>

observer>
observer>

observer>
observer>

observer>
observer>

observer>

clear-all
create-turtles 5
set g turtles
print count g

create-turtles 5
print count g

set g turtle-set turtles
print count g

create-turtles 5
print count g

print count turtles

Exercice 8 : Espéece

Vous pouvez définir différentes espéces (breeds) de tortues ou de liens qui se comportent différemment
(e.g. des moutons et des loups, des rues et des trottoirs). Vous définissez les espéces de tortues a I'aide du
mot-clé breed, en haut de l'onglet Code, avant toute procédure. Par exemple,

SRR [woves woif)

breed [sheep a-sheep]

Pour faire référence a un membre de l'espéce, utilisez le nom de l'espece au singulier, comme le fait le
rapporteur primitif turtle. Certaines commandes et rapporteurs contiennent le nom de |'espéce au pluriel,
comme create-wolves. D'autres ont le nom de I'espéce au singulier, comme wolf. L'ordre de déclaration est
également l'ordre de superposition dans la vue. Par exemple, les moutons apparaitront au-dessus des loups.

Quand vous définissez une espéce telle que sheep, un ensemble d’agents de cette espéce automatique-
ment créé. Les primitives create-sheep, hatch-sheep, sprout-sheep, sheep-here, sheep-at, sheep-on, et is-
a-sheep sont disponibles. Utilisez sheep-own pour définir de nouvelles variables de mouton. La variable de
tortue breed contient son ensemble d’agents de la méme espéce. Par exemple, \ breed = wolves [...]
permet de tester lI'espéce de l'agent. Un agent peut changer d’espéce. Par exemple, la commande one-of
wolves [set breed sheep] transforme un loup pris au hasard en mouton.

Q1. Dans le menu File, ouvrez la bibliothéque de modéles (Models Library) et sélectionnez Breeds and
Shapes Example. Examinez le code du modéle, configurez et exécutez.

Exercice 9 : Espéce de lien

Les especes de liens sont trés similaires aux espéces de tortues, cependant, il y a quelques différences.
Lorsque vous déclarez une espéce de liens, vous devez indiquer s'il s'agit d'une espece de liens dirigés ou non
dirigés en utilisant les mots-clés directed-1ink-breed et undirected-1link-breed. Par exemple,

directed-link-breed [streets street]
undirected-link-breed [friendships friendship]

7sur9

Une fois que vous avez créé un lien dirigé, vous ne pouvez plus créer de liens non dirigés et vice versa. Vous
pouvez, cependant, avoir des liens dirigés et non dirigés dans le méme environnement, mais pas dans la méme
espéce. Contrairement aux espéces de tortues, le nom singulier de I'espéce est nécessaire pour les espéces de
liens, car de nombreuses commandes et rapporteurs de liens utilisent le nom singulier, comme <link-breed>-
neighbor?.

De nouvelles primitives sont alors disponibles :

— pour une espéce de lien dirigée, e.g. create-street-from, create-streets-from, create-street-to,

create-streets-to, in-street-neighbor?, in-street-neighbors, in-street-from,
my-in-streets my-out-streets, out-street-neighbor?, out-street-neighbors et
out-street-to.

— pour une espéce de lien non dirigé, e.g; create-friendship-with, create-friendships-with,

friendship-neighbor?, friendship-neighbors, friendship-with et my-friendships.
Plusieurs especes de liens peuvent déclarer la méme variable -own, mais une variable ne peut pas étre partagée
entre une espece de tortues et une espece de lien. Comme avec les especes de tortues, I'ordre de déclaration
est également 'ordre de superposition dans la vue. Utilisez <l1ink-breeds>-own pour déclarer séparément les
variables de chaque espéce de liens. Vous pouvez changer I'espéce d'un lien avec la commande set breed.
Cependant, vous ne pouvez pas changer un lien typé en un lien non typé.

Q1. Dans le menu File, ouvrez la bibliotheque de modeéles (Models Library) et sélectionnez Link Breeds
Example. Examinez le code du modéle, configurez et exécutez le.

Exercice 10 : Les listes

Une liste peut contenir n‘importe quel type de valeur : un nombre, une chaine de caractéres, un agent, un
ensemble d'agents, ou une autre liste. Le dictionnaire NetLogo contient une section qui énumeére toutes les
primitives relatives aux listes.

Pour créer une liste constante, mettez simplement les valeurs que vous voulez entre crochets, e.g.
mylist [2 4 6 8],[sel] mylist [[2 4] [3 511 oulselt mylist [].

Pour créer a lavolée uneliste, utilisez le rapporteur list,e.g. random-list list (random 10) (random
20), (list random 10) ou (list random 10 random 20 random 30).

Le rapporteur replace-item retourne une liste en modifiant un élément d'une autre liste. Il prend trois
arguments. Le premier indique quel élément de la liste doit étre modifié. 0 signifie le premier élément, 1 signifie
le deuxiéme élément, etc. Par exemple,

mylist [2 7 5 Bob [3 0 -2]]

; [2 75 Bob [3 0 -2]]

set mylist replace-item 2 mylist 10
; [2 7 10 Bob [3 0 -2]]

Pour ajouter un élément a la fin (respectivement au début) d'une liste, utilisez le rapporteur 1put (respecti-
vement fput). Par exemple,

mylist lput 42 mylist
; [2 7 10 Bob [3 0 -2] 42]

Pour supprimer le dernier (respectivement premier) élément d'une liste, utilisez le rapporteur but-last
(respectivement but-first). Par exemple,

mylist but-last mylist
; [2 7 10 Bob [3 0 -2]]

set mylist but-first mylist
; [7 10 Bob [3 0 -2]]

Ces rapporteurs peuvent étre appelés récursivement. Par exemple,

mylist (replace-item 3 mylist
(replace-item 2 (item 3 mylist) 9))
; [7 10 Bob [3 0 9]]

8sur9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

La commande foreach permet d’exécuter une ou plusieurs commandes sur chaque élément d’une liste. Elle
prend argument une liste et une commande ou un bloc de commandes. Par exemple,

forkach 11 2 31 show
P

2

3

foreach [2 4 6]

[n ->crtn

show (word "created " n " turtles")]

; created 2 turtles

; created 4 turtles

: Created 6 turtles

foreach [1 2 3] [steps -> ask turtles [fd steps]]

foreach [true false true true] [should-move? -> ask turtles [if should-move? [fd 1 1]]

Le rapporteur map fonctionne de maniére similaire. Il prend argument une liste et une commande ou un
bloc de commandes. Par exemple,

sholy map round [1.2 2.2 2.7]

. affiche [1 2 3]

showmap [x -> x <0171 [T -134 -2 -10]

;; affiche [false true false false true true]
show map [x -> x * x] [1 2 3]

., affiche [1 4 9]

D’autres primitives comme filter, reduce et sort-by permettent de traiter des listes. Dans d‘autre cas,
vous devrez utiliser des boucles avec les commandes repeat ou while, voire une procédure récursive.
Pour que vos agents exécutent des instructions dans un ordre fixe, vous devez établir une liste d’agents en
utilisant les primitives sort et sort-by qui prennent un ensemble d’agents en argument :
— sort sur un ensemble d’agents composé de tortues retourne une liste de tortues triées selon l'ordre
croissant de leur numéro;
— sort sur un ensemble de tuiles retourne une liste de tuiles triées de gauche a droite et de haut en bas;
— sort sur un ensemble de liens retourne une liste triée par ordre croissant selon l'origine puis la destina-
tion, en cas d'égalité les liens sont triés par espéce dans l'ordre de déclaration;
— reverse sort trie par ordre décroissant;
— sort-by trie selon un critere, par exemple la taille avec la commande

EHI‘HM [[a b] -> [size] of a < [size] of b] turtles.

Vous pouvez alors demander a la liste d'agents d'exécuter des commandes :

E\EH sort turtles [the-turtle ->
ask the-turtle [

Exercice 11 : En conclusion

Vous connaissez désormais les principes et les principaux éléments de syntaxe du langage Netlogo pour
pouvoir définir vos propres modeéles multi-agents.

Pour aller plus loin, vous pouvez consulter :

— le guide d'interface qui décrit chaque élément de I'interface et sa fonction;

— le guide de programmation qui explique comment écrire des procédures;

— le dictionnaire qui répertorie et détaille toutes les primitives du langage.

9sur9

https://ccl.northwestern.edu/netlogo/docs/interface.html
https://ccl.northwestern.edu/netlogo/docs/programming.html
https://ccl.northwestern.edu/netlogo/docs/programming.html

