
TP n°2. Programmation multi-agents
SMA

5A FISE/FISA
Maxime MORGE

2025–2026

Ce guide de programmation présente le langage NetLogo en détail pour concevoir vos propres simulations
multi-agents.

Exercice 1 : Les agents

Les agents sont des entités qui exécutent des instructions. Ondistingue 4 types d’agents : les tortues (turtles),
les tuiles (patches), les liens (links) et l’observateur (observer). Les tortues sont des agents qui se déplacent dans
l’environnement. L’environnement, qui est bidimensionnel, est divisé en une grille de tuiles. Chaque tuile est
un carré de « terrain » sur lequel les tortues peuvent se déplacer. Les liens sont des agents qui relient deux
tortues. L’observateur n’est pas situé. Il supervise les tortues et les tuiles en leur transmettant des instructions.
Dans l’état inital, il n’y a pas de tortues. L’observateur peut créer de nouvelles tortues. Les tuiles peuvent éga-
lement créer de nouvelles tortues. Bien qu’elles soient immobiles, les tuiles peuvent également exécuter des
instructions.

Q1. Les tuiles ont des coordonnées. Par défaut, la tuile aux coordonnées (0, 0) est appelé l’origine. Les coordon-
nées des autres tuiles correspondent aux distances horizontales et verticales par rapport à celle-ci. Les coor-
données d’une tuile sont appelées pxcor et pycor. Quand vous vous déplacez vers la droite pxcor augmente.
vous vous déplacez vers le haut, pycor augmente. Le nombre total de tuiles est déterminé par les paramètres
min-pxcor, max-pxcor, min-pycor et max-pycor.

Q1.1. Démarrez NetLogo.

Q1.2. Cliquez sur le bouton Settings... dans l’onglet Interface.

Q1.3. Quelles sont les valeurs initiales de min-pxcor, max-pxcor, min-pycor et max-pycor? Combien y a-t-il
de tuiles?

Q1.4. Créez une grille de 10× 5 tuiles.

Q2. Les tortues ont également des coordonnées : xcor et ycor. Alors que les coordonnées d’une tuile sont
toujours des entières, celles d’une tortue peuvent être des réels.

Q2.1. Créez 1 tortues dans chaque coin,via le centre de commande.

create-turtles 1 [setxy 0 0]

create-turtles 1 [setxy 9 0]

create-turtles 1 [setxy 0 4]

create-turtles 1 [setxy 9 4]

Q3. Les liens n’ont pas de coordonnées. Chaque lien a deux extrémités, et chaque extrémité est une tortue.
Si l’une des tortues meurt, le lien meurt aussi. Un lien est représenté visuellement comme une ligne reliant les
deux tortues.

Q3.1. Créez un graphe de connexion complet via la commande
ask turtles [create-links-with other turtles].

Exercice 2 : Les procédures

Les commandes et les rapporteurs (reports) sont des instructions qui s’adressent aux agents. Une com-
mande est une instruction qui doit être exécutée par un agent. Un rapporteur est une instruction qui retourne
une valeur. Alors qu’une commande est préfixée par un verbe d’action (create, die, jump, inspectou clear), un
rapporteur est généralement un nom ou une expression nominale. Les commandes et rapporteurs du langage
NetLogo, qui sont appelés primitives, sont répertoriés dans un dictionnaire.

Q1. Les commandes et les rapporteurs que vous définissez sont appelés des procédures. Chaque procédure
a un nom, précédé du mot-clé to pour les procédures de commande et to-report pour les procédures de

1 sur 9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

rapporteur. Le mot-clé end marque la fin de la procédure. Les commandes et rapporteurs peuvent avoir des
arguments.

Q1.1. Créez un nouveau modèle.

Q1.2. Ajoutez un bouton setup et un bouton go.

Q1.3. Ajoutez les 2 procédures suivantes :

to setup ;; Définir une procédure intitulée setup

clear-all ;; Réinitialiser l'environnement

create-turtles 10 ;; Créer 10 tortues sur la tuile 0,0

[setxy random-xcor random-ycor] ;; Déplacer aléatoirement chaque tortue

reset-ticks ;; Redémarrer l'horloge

end ;; Terminer la définition de la procédure

to go

ask turtles [;; Demander aux tortues d'exécuter les commandes

fd 1 ;; avance (forward) d'un pas

rt random 10 ;; tourne à droite (right turn) aléatoirement

lt random 10 ;; tourne à gauche (left turn) aléatoirement

]

tick ;; Incrémenter le tic d'horloge

end

Notez que :
— setup et go sont des procédures de commande définies par l’utilisateur ;
— clear-all, create-turtles, reset-ticks, ask, lt, rt et tick sont des commandes primitives ;
— random et turtles sont des rapporteurs primitifs. random retourne un entier aléatoire inférieur à son

argument (ici entre 0 et 9). turtles rapporte l’ensemble de toutes les tortues ;
— les commandes clear-all et create-turtles ne peuvent être exécutées que par l’observateur alors

que la commande fd ne peut être exécutée que par les tortues. La commande tick peut être exécutée
par différents types d’agents.

Q1.4. Configurez et exécutez le modèle.

Q2. Les procédures peuvent avoir des arguments.

Q2.1. Modifiez la procédure go pour qu’elle appelle une autre procédure :

to go

ask turtles [;; Demander aux tortues d'exécuter

draw-polygon 8 who ;; dessinez un octogone dont la longueur

] ;; des côtés est égale à son numéro

tick ;; Incrémenter le tic d'horloge

end

to draw-polygon [num-sides len] ;; Dessiner un polygône

pen-down ;; baisser crayon

repeat num-sides [;; pour chaque côté

fd len ;; dessiner un côté

rt 360 / num-sides ;; tourner à droite

]

end

Q2.2. Configurez et exécutez le modèle.

Q3. Définissez votre propre rapporteur.

Q3.1. Modifiez la procédure go pour qu’elle utilise un rapporteur :

2 sur 9

to draw-polygon [num-sides len] ;; Dessiner un polygône

pen-down ;; baisser crayon

repeat num-sides [;; pour chaque côté

fd len ;; dessiner un côté

rt 360 / num-sides ;; tourner à droite

set label absolute-value xcor ;; affichez |xcor|

]

end

to-report absolute-value [number] ;; Retourner la valeur assolue d'un nombre

ifelse number >= 0 ;; si le nombre est positif

[report number] ;; retourner le nombre

[report (- number)] ;; sinon son opposé

end

Q3.2. Configurez et exécutez le modèle.

Exercice 3 : Les variables

Les variables d’agent permettent de stocker des valeurs pour chaque agent. Une variable d’agent peut être
une variable globale, une variable de tortue, une variable de tuile ou une variable de lien. Les variables globales
appartiennent à l’observateur : il n’y a qu’une seule valeur à laquelle chaque agent peut y accéder. Pour une
variable de tortue, chaque tortue a sa propre valeur pour cette variable. Il en va de même pour les variables
de tuile et de lien.

Q1. Toutes les tortues et tous les liens ont une variable définie par défaut color alors que toutes les tuiles ont
une variable pcolor.

Q1.1. Configurez le modèle.

Q1.2. Demandez à toutes les tortues de changer pour la couleur rouge.
La liste des variables d’agent par défaut est disponible ici. Par exemple, xcor, ycor et heading (qui indique

la direction vers laquelle la tortue est tournée) sont des variables de tortue alors que pxcor et pycor sont des
variables de tuile.

Q2. Vous allez définir votre propre variable.

Q2.1.Créez une variable globale en utilisant lemot-clé globals audébut de votre code, e.g. globals [nbPolygon].

Q2.2. Modifiez votre code pour incrémenter cette variable quand un nouveau polygone est tracé.

Q2.3. Dans l’onglet Interface, ajoutez un moniteur pour afficher la valeur de cette variable au cours de la
simulation.

Q2.4. Configurez et exécutez le modèle.

Q3. Pour définir des variables de tortue, de tuile et ou de lien, utilisez les mots-clés turtles-own, patches-own
et links-own.

Q3.1. Créez une variables de tortue intitulée eloignement qui représente la distance entre la tortue et l’ori-
gine puis affichez là sous la tortue à chaque tic.

Q3.2. Configurez et exécutez le modèle.

Q4. Les variables globales sont accessibles à toutmoment par n’importe quel agent. Demême, une tortue peut
lire et modifier les variables de la tuile sur laquelle elle se trouve.

Q4.1. Changez la couleur de la tuile à chaque angle de chaque octogone.

Q4.2. Configurez et exécutez le modèle.

Q5. Pour lire la valeur d’un variable d’un autre agent, utilisez le mot-clé of.

Q5.1.Dans la centre de commande, saisissez show [color] of turtle 5puis show [xcor + ycor] of turtle

5.
3 sur 9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html#builtinvariables

Q6. Pour créer une variable locale à une procédure, utilisez la commande let. au début de la procédure.

Q6.1. Ajoutez la procédure suivante :

to swap-colors [turtle1 turtle2] ;; Echanger la couleur de 2 tortues

let temp [color] of turtle1 ;; definir une variable locale

ask turtle1 [set color [color] of turtle2] ;; modifier la couleur d'une tortue

ask turtle2 [set color temp] ;; puis de l'autre

end

Q6.2.Modifiez la procédure go pour que à chaque tic d’horloge, 2 tortues choisies aléatoirement échangent
de couleur (one-of agentset rapporte de manière aléatoire un agent).

Q6.3. Configurez et exécutez le modèle.

Exercice 4 : Tic d’horloge

Dans la plupart des modèles, le temps est discrétisé en tics d’horloge (ticks). Affiché au-dessus de la vue,
le compteur de tics est accessible depuis le code grâce au rapporteur primitif ticks. La commande primitive
tick incrémente ce compteur alors que clear-all le réinitialise comme tout le reste. Utilisez la commande
reset-ticks au terme de la configuration pour démarrer le compteur.

Q1. Modifiez la procédure go pour que les tortues dessinent en alternance des carrés et des octogones.

Exercice 5 : La commande Ask

La commande Ask permet d’adresser des instructions aux tortues (turtles), aux tuiles (patches) et aux liens
(link).

Tout le code à exécuter par les tortues doit être situé dans un « contexte » de tortue. Vous pouvez établir
un contexte de tortue :

1. dans un bouton, en choisissant turtles dans le menu contextuel. Le code que vous placez dans le bou-
ton sera exécuté par toutes les tortues ;

2. dans le centre de commande, en choisissant turtles dans le menu contextuel. Toutes les commandes
que vous saisissez seront exécutées par toutes les tortues ;

3. en utilisant les commandes ask turtles, hatch, ou d’autres commandes qui établissent un contexte de
tortues.

Il en va de même pour les tuiles, les liens et l’observateur, sauf que vous ne pouvez pas utiliser la commande
ask avec l’observateur. Le code qui n’est pas à l’intérieur d’une commande ask s’adresse à l’observateur.

Un agentset est un ensemble d’agents qui peut contenir des tortues, des tuiles ou des liens, mais pas plus
d’un type à la fois. Par exemple la primitive turtles contient l’ensemble de toutes les tortues, alors que patches
contient toutes les tuiles et links tous les liens. Pour éviter les biais de simulation, l’ordre des agents dans un
agentset est par défaut aléatoire et différent à chaque fois que vous l’utilisez. Par conséquence les instructions
transmises par la commande ask sont exécutées par lesmembres de l’agentset dans un ordre aléatoire. Si vous
souhaitez que vos agents réalisent des instructions selon un ordre déterminé, utilisez une liste des agents.

Q1. Voici un exemple de l’utilisation de la commande ask dans une procédure :

to setup

clear-all

create-turtles 100 ;; créer de manière pseudo-aléatoire 100 tortues

ask turtles

[set color red ;; changer la couleur des tortues

fd 50] ;; avance (forward) de 50 pas

ask patches

[if pxcor > 0 ;; si la tuile est à droite de la vue

[set pcolor green]] ;; alors changer la couleur

reset-ticks

end

4 sur 9

Quel est le resultat de ce code?

Q1.1. Dans le menu File, créez un nouveau modèle (New).

Q1.2. Dans l’onglet Interface, créez un bouton intitulé Configurer qui exécute la procédure setup.

Q1.3. Dans l’onglet Code, copiez le code de la procédure setup.

Q1.4. Retournez dans l’onglet Interface et configurez votre modèle. Qu’est-ce que vous observez dans la
vue?

Q1.5. Dans le menu File, enregistrez votre modèle (Save).
Vous pouvez également utiliser la commande ask pour vous adresser individuellement aux tortues, aux

tuiles ou aux liens pour exécuter des commandes en utilisant les primitives turtle, patch, link et patch-at
comme dans l’exemple suivant :

to setup

clear-all

crt 3 ;; crée 3 tortues

ask turtle 0 ;; dit à la première...

[fd 1] ;; ...avance

ask turtle 1 ;; dit à la seconde...

[set color green] ;; ...devient vert

ask turtle 2 ;; dit à la troisième...

[rt 90] ;; ...tourne à droite

ask patch 2 -2 ;; demande à la tuile (2,-2)...

[set pcolor blue] ;; ...devient bleu

ask turtle 0 ;; demande à la première tortue...

[ask patch-at 1 0 ;; ...de demander à la tuile à l'est

[set pcolor red]] ;; ...de devenir rouge

ask turtle 0 ;; demande à la première tortue...

[create-link-with turtle 1] ;; ...de créer un lien avec la seconde

ask link 0 1 ;; demande à ce lien

[set color blue] ;; ...de devenir bleu

reset-ticks

end

La primitive turtle prend en argument un entier, i.e. le numéro de la tortue. La primitive patch prend en
argument les valeurs de coordonnées de la tuile, i.e. pxcor et pycor. La primitive link prend en argument les
numéros des deux tortues qu’il relie. La primitive patch-atprend en argument les distances vis-à-vis de la tortue
dans les directions x et y. Par exemple, la procédure ask turtle 0 [ask patch-at 1 0 [...]] demande
à la tortue numéro 0 de s’adresser à la tuile à l’est d’elle-même.

Q1.6. Dans l’onglet Code, copiez le code de la procédure setup.

Q1.7. Retournez dans l’onglet Interface et configurez votre modèle. Qu’est-ce que vous observez dans la
vue?

Quand vous adressez un ensemble de commandes à un ensemble d’agents, chaque agent exécute toutes
les commandes, puis l’agent suivant les exécute toutes, etc. si vous écrivez :

ask turtles

[fd 1

set color red]

D’abord une tortue avance et devient rouge, puis une autre tortue avance et devient rouge, etc. Si vous l’écrivez
de cette manière :

ask turtles [fd 1]

ask turtles [set color red]

D’abord toutes les tortues avancent, ensuite elles deviennent rouge.

5 sur 9

Exercice 6 : La primitive agentset

La primitive agentset permet de construire des ensembles d’agents qui contiennent certaines tortues, cer-
taines tuiles ou certains liens, e.g toutes les tortues rouges, les tuiles dont la coordonnée pxcor est divisible par
cinq, ou les tortues du premier quadrant qui sont sur une tuile verte ou connectées à la tortue numéro 0. Vous
pouvez alors vous adresser à cet ensemble avec la commande ask. Une autre façon de procéder pour créer un
ensemble de tortues consiste à utiliser les primitives :

— turtles-here avec les tortues sur une tuile ;
— turtles-at avec les tortues sur une autre tuile situées à des distances x et y;
— turtles-on avec les tortues situées sur une autre tuile ou sur un ensemble de tuiles, voire sur la même

tuile qu’une tortue ou un ensemble de tortues.

Q1. Commentez les ensembles d’agents dans le code suivant :

;; Toutes les autres tortues à l'exception de celle-ci

other turtles

;;

other turtles-here

;;

turtles with [color = red]

;;

turtles-here with [color = red]

;;

patches with [pxcor > 0]

;;

turtles in-radius 3

;;

patches at-points [[1 0] [0 1] [-1 0] [0 -1]]

;;

neighbors4

;;

turtles with [(xcor > 0) and (ycor > 0)

and (pcolor = green)]

;;

turtles-on neighbors4

;;

[my-links] of turtle 0

Q2. Pour un ensemble d’agents, vous pouvez utiliser les commandes :
— ask qui adresse des instructions aux agents ;
— any? qui retourne faux si l’ensemble est vide ;
— all? qui teste une condition sur tous les agents de l’ensemble ;
— count qui retourne le nombre d’agents dans l’ensemble.

Q2.1. Configurez votre modèle.

Q2.2.Dans le centre de commande, saisissez l’instruction ask one-of turtles [set color blue]. Quel
est le résultat?

Q2.3. Saisissez l’instruction ask one-of patches [sprout 1]. Répétez cette instruction. Quel est le ré-
sultat? Pour plus de détail consultez la documentation 1.

Q2.4. Saisissez l’instruction ask max-one-of turtles [xcor] [die]. Répétez cette instruction. Quel est
le résultat?

Q2.5. Saisissez l’instruction show mean [xcor] of turtles. Quel est le résultat?
Les ensembles no-turtles, no-patches et no-links sont vides. L’égalité entre des ensembles d’agents peut

être testé avec les opérateurs = et !=. Si un agent est membre d’un ensemble, member? retourne vrai.

1. https://ccl.northwestern.edu/netlogo/docs/dictionary.html#sprout

6 sur 9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html#sprout

Exercice 7 : Ensembles spéciaux d’agents

Les ensembles d’agents turtles et links ont un comportement spécial, car ils contiennent toujours les
ensembles de toutes les tortues et de tous les liens. Par conséquent, ces ensembles peuvent croître.

Q1. Dans l’onglet Code, déclarez la variable globale g grâce à l’instruction globals [g]. Dans le centre de
commande, saisissez les commandes suivantes et notez les valeurs de retour. Comment interprétez-vous ces
résultats?

observer> clear-all

observer> create-turtles 5

observer> set g turtles

observer> print count g

observer> create-turtles 5

observer> print count g

observer> set g turtle-set turtles

observer> print count g

observer> create-turtles 5

observer> print count g

observer> print count turtles

Exercice 8 : Espèce

Vous pouvez définir différentes espèces (breeds) de tortues ou de liens qui se comportent différemment
(e.g. des moutons et des loups, des rues et des trottoirs). Vous définissez les espèces de tortues à l’aide du
mot-clé breed, en haut de l’onglet Code, avant toute procédure. Par exemple,

breed [wolves wolf]

breed [sheep a-sheep]

Pour faire référence à un membre de l’espèce, utilisez le nom de l’espèce au singulier, comme le fait le
rapporteur primitif turtle. Certaines commandes et rapporteurs contiennent le nom de l’espèce au pluriel,
comme create-wolves. D’autres ont le nom de l’espèce au singulier, comme wolf. L’ordre de déclaration est
également l’ordre de superposition dans la vue. Par exemple, les moutons apparaîtront au-dessus des loups.

Quand vous définissez une espèce telle que sheep, un ensemble d’agents de cette espèce automatique-
ment créé. Les primitives create-sheep, hatch-sheep, sprout-sheep, sheep-here, sheep-at, sheep-on, et is-
a-sheep sont disponibles. Utilisez sheep-own pour définir de nouvelles variables de mouton. La variable de
tortue breed contient son ensemble d’agents de la même espèce. Par exemple, if breed = wolves [...]

permet de tester l’espèce de l’agent. Un agent peut changer d’espèce. Par exemple, la commande ask one-of

wolves [set breed sheep] transforme un loup pris au hasard en mouton.

Q1. Dans le menu File, ouvrez la bibliothèque de modèles (Models Library) et sélectionnez Breeds and

Shapes Example. Examinez le code du modèle, configurez et exécutez.

Exercice 9 : Espèce de lien

Les espèces de liens sont très similaires aux espèces de tortues, cependant, il y a quelques différences.
Lorsque vous déclarez une espèce de liens, vous devez indiquer s’il s’agit d’une espèce de liens dirigés ou non
dirigés en utilisant les mots-clés directed-link-breed et undirected-link-breed. Par exemple,

directed-link-breed [streets street]

undirected-link-breed [friendships friendship]

7 sur 9

Une fois que vous avez créé un lien dirigé, vous ne pouvez plus créer de liens non dirigés et vice versa. Vous
pouvez, cependant, avoir des liens dirigés et non dirigés dans le même environnement, mais pas dans la même
espèce. Contrairement aux espèces de tortues, le nom singulier de l’espèce est nécessaire pour les espèces de
liens, car de nombreuses commandes et rapporteurs de liens utilisent le nom singulier, comme <link-breed>-
neighbor?.

De nouvelles primitives sont alors disponibles :
— pour une espèce de lien dirigée, e.g. create-street-from, create-streets-from, create-street-to,

create-streets-to, in-street-neighbor?, in-street-neighbors, in-street-from,
my-in-streets my-out-streets, out-street-neighbor?, out-street-neighbors et
out-street-to.

— pour une espèce de lien non dirigé, e.g; create-friendship-with, create-friendships-with,
friendship-neighbor?, friendship-neighbors, friendship-with et my-friendships.

Plusieurs espèces de liens peuvent déclarer la même variable -own, mais une variable ne peut pas être partagée
entre une espèce de tortues et une espèce de lien. Comme avec les espèces de tortues, l’ordre de déclaration
est également l’ordre de superposition dans la vue. Utilisez <link-breeds>-own pour déclarer séparément les
variables de chaque espèce de liens. Vous pouvez changer l’espèce d’un lien avec la commande set breed.
Cependant, vous ne pouvez pas changer un lien typé en un lien non typé.

Q1. Dans le menu File, ouvrez la bibliothèque de modèles (Models Library) et sélectionnez Link Breeds

Example. Examinez le code du modèle, configurez et exécutez le.

Exercice 10 : Les listes

Une liste peut contenir n’importe quel type de valeur : un nombre, une chaîne de caractères, un agent, un
ensemble d’agents, ou une autre liste. Le dictionnaire NetLogo contient une section qui énumère toutes les
primitives relatives aux listes.

Pour créer une liste constante, mettez simplement les valeurs que vous voulez entre crochets, e.g. set
mylist [2 4 6 8], set mylist [[2 4] [3 5]] ou set mylist [].

Pour créer à la volée une liste, utilisez le rapporteur list, e.g. set random-list list (random 10) (random

20), set (list random 10) ou set (list random 10 random 20 random 30).
Le rapporteur replace-item retourne une liste en modifiant un élément d’une autre liste. Il prend trois

arguments. Le premier indique quel élément de la liste doit être modifié. 0 signifie le premier élément, 1 signifie
le deuxième élément, etc. Par exemple,

set mylist [2 7 5 Bob [3 0 -2]]

; [2 7 5 Bob [3 0 -2]]

set mylist replace-item 2 mylist 10

; [2 7 10 Bob [3 0 -2]]

Pour ajouter un élément à la fin (respectivement au début) d’une liste, utilisez le rapporteur lput (respecti-
vement fput). Par exemple,

set mylist lput 42 mylist

; [2 7 10 Bob [3 0 -2] 42]

Pour supprimer le dernier (respectivement premier) élément d’une liste, utilisez le rapporteur but-last
(respectivement but-first). Par exemple,

set mylist but-last mylist

; [2 7 10 Bob [3 0 -2]]

set mylist but-first mylist

; [7 10 Bob [3 0 -2]]

Ces rapporteurs peuvent être appelés récursivement. Par exemple,

set mylist (replace-item 3 mylist

(replace-item 2 (item 3 mylist) 9))

; [7 10 Bob [3 0 9]]

8 sur 9

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

La commande foreach permet d’exécuter une ou plusieurs commandes sur chaque élément d’une liste. Elle
prend argument une liste et une commande ou un bloc de commandes. Par exemple,

foreach [1 2 3] show

; 1

; 2

; 3

foreach [2 4 6]

[n -> crt n

show (word "created " n " turtles")]

; created 2 turtles

; created 4 turtles

; created 6 turtles

foreach [1 2 3] [steps -> ask turtles [fd steps]]

foreach [true false true true] [should-move? -> ask turtles [if should-move? [fd 1]]]

Le rapporteur map fonctionne de manière similaire. Il prend argument une liste et une commande ou un
bloc de commandes. Par exemple,

show map round [1.2 2.2 2.7]

;; affiche [1 2 3]

show map [x -> x < 0] [1 -1 3 4 -2 -10]

;; affiche [false true false false true true]

show map [x -> x * x] [1 2 3]

;; affiche [1 4 9]

D’autres primitives comme filter, reduce et sort-by permettent de traiter des listes. Dans d’autre cas,
vous devrez utiliser des boucles avec les commandes repeat ou while, voire une procédure récursive.

Pour que vos agents exécutent des instructions dans un ordre fixe, vous devez établir une liste d’agents en
utilisant les primitives sort et sort-by qui prennent un ensemble d’agents en argument :

— sort sur un ensemble d’agents composé de tortues retourne une liste de tortues triées selon l’ordre
croissant de leur numéro ;

— sort sur un ensemble de tuiles retourne une liste de tuiles triées de gauche à droite et de haut en bas ;
— sort sur un ensemble de liens retourne une liste triée par ordre croissant selon l’origine puis la destina-

tion, en cas d’égalité les liens sont triés par espèce dans l’ordre de déclaration ;
— reverse sort trie par ordre décroissant ;
— sort-by trie selon un critère, par exemple la taille avec la commande

sort-by [[a b] -> [size] of a < [size] of b] turtles.
Vous pouvez alors demander à la liste d’agents d’exécuter des commandes :

foreach sort turtles [the-turtle ->

ask the-turtle [

...

]

]

Exercice 11 : En conclusion

Vous connaissez désormais les principes et les principaux éléments de syntaxe du langage Netlogo pour
pouvoir définir vos propres modèles multi-agents.

Pour aller plus loin, vous pouvez consulter :
— le guide d’interface qui décrit chaque élément de l’interface et sa fonction ;
— le guide de programmation qui explique comment écrire des procédures ;
— le dictionnaire qui répertorie et détaille toutes les primitives du langage.

9 sur 9

https://ccl.northwestern.edu/netlogo/docs/interface.html
https://ccl.northwestern.edu/netlogo/docs/programming.html
https://ccl.northwestern.edu/netlogo/docs/programming.html

