

DIMENSIONNEMENT DES STRUCTURES

SEMESTRE 4

2006-2007

MODULE F412 :

<u>MÉTHODES ÉNERGÉTIQUES</u>

<u>PROBLÈMES et CORRIGES</u>

Bienvenue à vous

au laboratoire de :

Dimensionnement Des Structures

du Département :

Génie Mécanique et Productique

Ce livre électronique est destiné à compléter le cours enseigné durant la deuxième année du module F412, et relatif au Quatième Semestre.

Il reprend le plan suivi en amphithéâtre avec d'avantages de détails, d'illustrations ainsi que des corrigés des Problèmes du fascicule Travaux Dirigés qui, nous l'espérons, vous permettront de mieux comprendre cette matière qui n'est pas si terrible qu'elle peut laisser paraître.

A présent, choisissez sur votre gauche dans l'onglet signet un chapitre du programme que vous désirez voir ou revoir .

BON TRAVAIL-BON COURAGE

G.LHERMET-G.VESSIERE

<u>F412</u>

MÉTHODE DE CLAPEYRON

MÉTHODE DE MAXWELL-MOHR ET DE CASTIGLIANO

MÉTHODE DES ÉLÉMENTS FINIS

PROBLEMES DE SYNTHESE

ANNEXE A1. INTEGRALES DE MOHR

ANNEXE A2. MOMENTS FLÉCHISSANTS DANS QUELQUES CAS SIMPLES

<u>1. MÉTHODE DE CLAPEYRON</u>

PROBLÈME N°1

du point B en mm).

RÈPONSES N°1

Les barres AB et BC (de même section droite A et de même matériau) sont articulées en A, B et C. Une force verticale P est appliquée en B.

1°) Déterminez l'expression littérale de l'énergie de déformation élastique emmagasinée par les deux barres en fonction de P, L, E et A.

2°) En déduire l'expression littérale du déplacement vertical du point B.

3°) Peut-on avec cette méthode, calculer la déplacement horizontal de B?

<u>Application numérique</u>: P=10kN, L=2m, E=200GPa et A=1cm². Calculez la valeur (en J) de l'énergie de déformation élastique et la valeur du déplacement vertical

Pour trouver les efforts normaux s'exercant dans les barres AB et CD, mettons en équilibre le nœud B : F_2

$$\begin{cases} -F_{1} - F_{2} \frac{\sqrt{2}}{2} = 0 \\ -P + F_{2} \frac{\sqrt{2}}{2} = 0 \end{cases} \Rightarrow \begin{cases} F_{2} = P\sqrt{2} \\ F_{1} = -P \end{cases}$$
Après application du principe d'action mutuelle

$$N_{X}^{AB} = -P \qquad N_{X}^{BC} = P\sqrt{2}$$
d'où :

$$W_{déf} = \int_{0}^{L} \left(\frac{(-P)^{2}}{2EA}\right) dx + \int_{0}^{L\sqrt{2}} \left(\frac{(P\sqrt{2})^{2}}{2EA}\right) dx$$

$$W_{déf} = \frac{P^{2}}{2EA} \int_{0}^{L} dx + \frac{P^{2}}{EA} \int_{0}^{L\sqrt{2}} dx$$

$$W_{déf} = \frac{P^{2}}{2EA} \left[x\right]_{0}^{L} + \frac{P^{2}}{EA} \left[x\right]_{0}^{L\sqrt{2}}$$

$$W_{déf} = \frac{P^{2}}{2EA} L + \frac{P^{2}}{EA} L\sqrt{2}$$

$$W_{déf} = \frac{P^{2}}{2EA} L + \frac{P^{2}}{EA} L\sqrt{2}$$

$$W_{déf} = \frac{P^{2}}{2EA} L + \frac{P^{2}}{EA} L\sqrt{2}$$

Appliquons la méthode de Clapeyron : $W_{ext} = W_{def}$

$$W_{ext} = \frac{1}{2} P \delta_{vB} \qquad W_{déf} = \frac{P^2 L}{2 E A} \left(1 + 2\sqrt{2} \right)$$
$$\delta_{vB} = \frac{P L}{E A} \left(1 + 2\sqrt{2} \right)$$

En identifiant :

3)

Non, car l'identification implique qu'une seule charge. <u>Application numérique</u> : P=30kN, L=2m, E=200GPa et $A=1cm^2$.

$$W_{déf} = \frac{P^2 L}{2EA} \left(1 + 2\sqrt{2} \right) = \frac{\left(10.10^3 \right)^2 2.10^3}{2 \times 200.10^3 \times 100} \left(1 + 2\sqrt{2} \right) = 19142Nmm \qquad W_{déf} = 19,142 \text{ J}$$

$$\delta_{vB} = \frac{P L}{EA} \left(1 + 2\sqrt{2} \right) = \frac{10.10^3 \times 2.10^3}{200.10^3 \times 100} \left(1 + 2\sqrt{2} \right) = 3,828mm \qquad \delta_{vB} = 3,83 \text{ mm}$$

PROBLÈME N°2

1°) Déterminez l'expression de l'énergie de déformation élastique en fonction

de P, L, A, E et n. 2°) En déduire l'expression du raccourcissement de la barre. Déterminer l'expression du raccourcissement de la barre pour n=1 et n=2.

RÈPONSES N°2

 $W_{déf} = \frac{P^2 L}{4EA} \left(1 + \frac{1}{n^2} \right)$

2)

Appliquons la méthode de Clapeyron :
$$W_{ext} = W_{dét}$$

Le déplacement associé à la charge P en C (δ_{hC}), est le raccourcissement de la barre ΔL :

$$W_{ext} = \frac{1}{2} P D \qquad \qquad W_{ext} = \frac{1}{2} P \delta_{hC}$$
$$\frac{1}{2} P \delta_{hC} = \frac{P^2 L}{4EA} \left(1 + \frac{1}{n^2} \right) \qquad \qquad \delta_{hC} = \frac{PL}{2EA} \left(1 + \frac{1}{n^2} \right)$$

Ce déplacement étant positif, il s'effectue dans le même sens que la charge . C'est donc bien un raccourcissement de la barre.

$$\Delta L = \frac{PL}{2EA} \left(1 + \frac{1}{n^2} \right)$$

Si n=1

 $\Delta L = \frac{PL}{EA}$

Si n=2
$$\Delta L =$$

1°) Déterminez l'expression de l'énergie de déformation élastique en fonction de C, L, G et d. En déduire l'expression de la rotation de la section droite C.

5PL

8EA

2°) L'énergie de déformation élastique admissible est de 12J, L=1m, d=40mm, G=80 GPa. Calculez la valeur du couple maximum admissible C (en Nm).et la valeur de la rotation de la section C (en °).

RÈPONSES N°3

1°)

Nous devons pour appliquer la méthode de Clapeyron : $W_{ext} = W_{déf}$, calculer l'énergie de déformation emmagasinée dans la poutre ABC, et l'identifier avec le travail exterieur du au couple C.

Le déplacement associé au couple C en C (θ_x^{C}), est la rotation suivant l'axe du couple de la section C :

$$W_{ext} = \frac{1}{2}PD \qquad W_{ext} = \frac{1}{2}C\theta_x^C$$
$$W_{déf} = \sum_{barres} \int_0^L (\frac{N_x^2}{2EA} + \frac{T_y^2}{2GA} + \frac{T_z^2}{2GA} + \frac{M_x^2}{2GI_G} + \frac{M_y^2}{2EI_y} + \frac{M_z^2}{2EI_z})dx$$

La poutre ABC est soumise à de la torsion pure :
$$M_{x}^{CB} = -C \qquad M_{x}^{BA} = -C$$
$$W_{déf} = \int_{C}^{A} \left(\frac{M_{x}^{2}}{2GI_{G}^{CA}}\right) dx = \int_{C}^{B} \left(\frac{(M_{x}^{CB})^{2}}{2GI_{G}^{CB}}\right) dx + \int_{B}^{A} \left(\frac{(M_{x}^{BA})^{2}}{2GI_{G}^{BA}}\right) dx$$
$$W_{déf} = \int_{0}^{L} \left(\frac{(-C)^{2}}{2GI_{G}^{CB}}\right) dx + \int_{\frac{L}{2}}^{\frac{3L}{2}} \left(\frac{(-C)^{2}}{2GI_{G}^{BA}}\right) dx = \frac{C^{2}}{2GI_{G}^{CB}} \int_{0}^{L} dx + \frac{C^{2}}{2GI_{G}^{BA}} \int_{\frac{L}{2}}^{\frac{3L}{2}} dx$$
$$W_{déf} = \frac{C^{2}L}{4GI_{G}^{CB}} + \frac{C^{2}L}{2GI_{G}^{BA}} = \frac{C^{2}L}{2G} \left(\frac{1}{2I_{G}^{CB}} + \frac{1}{I_{G}^{B}}\right) \qquad \text{avec } I_{G}^{CB} = \frac{\pi d^{4}}{32} \text{ et } I_{G}^{BA} = \frac{\pi (d\sqrt{2})^{4}}{32}$$

IUTB-LYON1-GMP-DDS

$$\begin{split} W_{d\acute{e}f} = & \frac{12C^2L}{G\pi d^4} \\ W_{ext} = & \frac{1}{2}C\theta_x^C \text{ et } W_{d\acute{e}f} = & \frac{12C^2L}{G\pi d^4} \text{ , identifions les 2 expressions :} \\ & \theta_x^C = & \frac{24CL}{G\pi d^4} \end{split}$$

2°) Application numérique : W_{déf}=12J, L=1m, d=40mm, G=80 GPa

$$W_{déf} = \frac{12C^{2}L}{G\pi d^{4}} \implies C = \left(\frac{G\pi d^{4}W_{déf}}{12L}\right)^{\frac{1}{2}} = \sqrt{\frac{80.10^{3} \times \pi \times 40^{4} \times 12.10^{3}}{12 \times 1000}} = 802121Nmm$$
$$C = 802, 1 Nm$$
$$\theta_{x}^{C} = \frac{24CL}{G\pi d^{4}} = \frac{24 \times 802121 \times 1000}{90.10^{3} \times 10^{4}} = 0,0299rd$$
$$\theta_{x}^{C} = 1^{\circ}71$$

$$\theta_x^C = \frac{24CL}{G\pi d^4} = \frac{24 \times 802121 \times 1000}{80.10^3 \times \pi \times 40^4} = 0,0299rd$$

PROBLÈME N°4

En ne tenant compte que de l'énergie de déformation élastique due au moment de torsion et sachant que C_0 = 63 Nm, G = 80 GPa, calculez : 1°) L'énergie de déformation élastique (en J).

2°) La rotation de A (en d°).

RÈPONSES N°4

Le déplacement associé au couple C_0 en A (θ_x^A), est la rotation suivant l'axe du couple de la section A:

$$W_{ext} = \frac{1}{2}PD \quad \text{dans notre cas}: \qquad W_{ext} = \frac{1}{2}C_0\theta_x^A$$

Méthode de Clapeyron : $W_{ext} = W_{déf} \quad \text{d'où}: \frac{1}{2}C_0\theta_x^A = 5345Nmm \Rightarrow \theta_x^A = \frac{2 \times 5345}{63.10^3} = 0,170rd$
 $\theta_x^A = 9°72$

PROBLÈME N°5

tranchant est inférieure à 1%.

Déterminez l'expression littérale du déplacement vertical de A en prenant en compte le moment de flexion et l'effort tranchant.

Montrez que si v = 0.3 et L/h = 10 l'erreur commise en négligeant l'effort

RÈPONSES N°5

Nous devons chercher le Torseur de Section en G de la barre AB : $\Im_{section_G} = \begin{cases} 0 & 0 \\ 0 & P(L-X) \\ -P & 0 \end{cases}$ La barre est donc soumise à un effort tranchant constant de B à A : $T_Z = -P$, et à un moment de flexion linéaire : $M_Y = P(L-X)$

d'où :

$$W_{déf} = \int_0^L \left(\frac{T_Z^2}{2GA} + \frac{M_Y^2}{2EI_Y}\right) dx = \int_0^L \left(\frac{T_Z^2}{2GA}\right) dx + \int_0^L \left(\frac{M_Y^2}{2EI_Y}\right) dx = W_{déf}^{T_Z} + W_{déf}^M$$

Calculons l'énergie de déformation due à l'effort tranchant :

$$W_{def}^{T_{Z}} = \int_{0}^{L} \left(\frac{T_{Z}^{2}}{2GA}\right) dx = \int_{0}^{L} \frac{P^{2}}{2GA} dx = \frac{P^{2}}{2GA} \int_{0}^{L} dx = \frac{P^{2}}{2GA} \left[x\right]_{0}^{L} = \frac{P^{2}L}{2GA}$$

Puis l'énergie de déformation due au moment fléchissant:

$$W_{def}^{M_{Y}} = \int_{0}^{L} \left(\frac{M_{Y}^{2}}{2EI_{Y}}\right) dx = \int_{0}^{L} \frac{\left(P(L-x)\right)^{2}}{2EI_{Y}} dx = \frac{P^{2}}{2EI_{Y}} \int_{0}^{L} \left(L-x\right)^{2} dx = \frac{P}{2EI_{Y}} \left\lfloor \frac{\left(L-x\right)^{3}}{3} \right\rfloor_{0}^{L} = \frac{P^{2}L^{3}}{6EI_{Y}}$$

D'où :

$$W_{déf} = W_{déf}^{T_Z} + W_{déf}^{M_Y} = \frac{P^2 L}{2GA} + \frac{P^2 L^3}{6EI_Y}$$

Application numérique : si v = 0.3 et L/h = 10

$$W_{d\acute{e}f} = \frac{P^{2}L}{2GA} + \frac{P^{2}L^{3}}{6EI_{Y}} = \frac{P^{2}L}{2I_{Y}} \left(\frac{I_{Y}}{GA} + \frac{L^{2}}{3E} \right) \quad \text{or} \quad G = \frac{E}{2(1+\upsilon)}$$

$$W_{d\acute{e}f} = \frac{P^{2}L^{3}}{6EI_{Y}} \left(1 + \frac{(1+\upsilon)}{2} \left(\frac{h}{L} \right)^{2} \right) \quad W_{d\acute{e}f} = \frac{P^{2}L^{3}}{6EI_{Y}} \left(1 + \frac{(1+\upsilon,3)}{2} (0,1)^{2} \right)$$

$$W_{d\acute{e}f} = \frac{P^{2}L^{3}}{6EI_{Y}} \left(1 + 6,5.10^{-3} \right) = \frac{P^{2}L^{3}}{6EI_{Y}} \left(1 + 0,65.10^{-2} \right) = \frac{P^{2}L^{3}}{6EI_{Y}} \left(1 + \frac{0,65}{100} \right)$$

Conclusion :

$$W^{M_Y}_{_{def}} = \frac{P^2 L^3}{6EI_Y}$$
 et $W^{T_Z}_{_{def}} = \frac{P^2 L^3}{6EI_Y} \times \frac{0,65}{100}$

L'énergie de déformation due à l'effort tranchant, ne représente que moins de 1 % de l'énergie de déformation totale.

Nous en concluons que l'énergie de déformation due à l'effort tranchant est en règle générale négligeable par rapport à l'énergie de déformation due au moment de flexion.

Expression littérale du déplacement vertical de A

Appliquons la méthode de Clapeyron : $W_{ext} = W_{déf}$

 $W_{ext} = \frac{1}{2} P \delta_v^A \text{ et } W_{déf} = \frac{P^2 L^3}{6EI_Y} \left(1 + \frac{0.65}{100} \right)$ En identifiant : $\delta_v^A = \frac{P L^3}{3EI_Y} \left(1 + \frac{0.65}{100} \right)$

La flèche due à l'effort tranchant ne représente que 0,65% du déplacement vertical de la section A.

PROBLÈME N°6

Déterminez en ne tenant compte que du moment fléchissant l'expression littérale de la rotation de la section droite C en fonction de C, L, a, b, E et I_y.

RÈPONSES N°6

Le déplacement associé au couple C en C (θ_y^C) , est la rotation suivant l'axe du couple de la section C :

$$W_{ext} = \frac{1}{2} P D \qquad \qquad W_{ext} = \frac{1}{2} C \theta_Y^C$$

Détermination de l'énergie de déformation :

$$W_{d\acute{e}f} = \sum_{barres} \int_{0}^{L} (\frac{N_{X}^{2}}{2EA} + \frac{T_{Y}^{2}}{2GA} + \frac{T_{Z}^{2}}{2GA} + \frac{M_{X}^{2}}{2GI_{G}} + \frac{M_{Y}^{2}}{2EI_{Y}} + \frac{M_{Z}^{2}}{2EI_{Z}}) dx W_{d\acute{e}f} = \int_{A}^{B} (\frac{T_{Z}^{2}}{2GA} + \frac{M_{Y}^{2}}{2EI_{Y}}) dx W_{d\acute{e}f} = \int_{A}^{B} (\frac{T_{Z}^{2}}{2GA} + \frac{M_{Y}^{2}$$

Nous devons négliger l'énergie de déformation due à l'effort tranchant par rapport celle emmagasinée par la flexion : $W_{déf} = \int_{A}^{B} \frac{M_{Y}^{2}}{2EI_{Y}} dx$

$$W_{déf} = \int_{A}^{C} \frac{M_{Y}^{2}}{2EI_{Y}} dx + \int_{C}^{B} \frac{M_{Y}^{2}}{2EI_{Y}} dx = \int_{A}^{C} \frac{\left(\frac{C}{L}X\right)^{2}}{2EI_{Y}} dx + \int_{C}^{B} \frac{\left(-\frac{C}{L}(L-X)\right)^{2}}{2EI_{Y}} dx$$
$$W_{déf} = \frac{C^{2}}{2EI_{Y}L^{2}} \left(\int_{0}^{a} X^{2} dx + \int_{a}^{L} (L-X)^{2} dx\right) = \frac{C^{2}}{2EI_{Y}L^{2}} \left(\left[\frac{X^{3}}{3}\right]_{0}^{a} + \left[\frac{(L-X)^{3}}{3}\right]_{a}^{L}\right) = \frac{C^{2}(a^{3}+b^{3})}{6EI_{Y}L^{2}} dx$$

Appliquons la méthode de Clapeyron : $W_{ext} = W_{d\acute{e}f}$

$$W_{ext} = \frac{1}{2}C\theta_Y^C \text{ et } W_{déf} = \frac{C^2(a^3 + b^3)}{6EI_YL^2}$$
En identifiant : $\theta_Y^C = \frac{C(a^3 + b^3)}{3EI_YL^2}$

PROBLÈME N°7

Déterminez en ne tenant compte que du moment fléchissant l'expression littérale de la flèche verticale de la section droite C en fonction de P, L, a, b, E et I_Y.

RÈPONSES N°7

$$W_{ext} = \frac{1}{2} P D \qquad \qquad W_{ext} = \frac{1}{2} P \delta_{\nu}^{C}$$

Détermination de l'énergie de déformation :

$$W_{d\acute{e}f} = \sum_{barres} \int_{0}^{L} (\frac{N_{X}^{2}}{2EA} + \frac{T_{Y}^{2}}{2GA} + \frac{T_{Z}^{2}}{2GA} + \frac{M_{X}^{2}}{2GI_{G}} + \frac{M_{Y}^{2}}{2EI_{Y}} + \frac{M_{Z}^{2}}{2EI_{Z}}) dx W_{d\acute{e}f} = \int_{A}^{B} (\frac{T_{Z}^{2}}{2GA} + \frac{M_{Y}^{2}}{2EI_{Y}}) dx W_{d\acute{e}f} = \int_{A}^{B} (\frac{T_{Z}^{2}}{2GA} + \frac{M_{Y}^{2}$$

Nous devons négliger l'énergie de déformation due à l'effort tranchant par rapport celle emmagasinée par la flexion : $W_{déf} = \int_{A}^{B} \frac{M_{Y}^{2}}{2EI_{Y}} dx$

$$W_{déf} = \int_{A}^{C} \frac{M_{Y}^{2}}{2EI_{Y}} dx + \int_{C}^{B} \frac{M_{Y}^{2}}{2EI_{Y}} dx = \int_{A}^{C} \frac{\left(\frac{Pb}{L}X\right)^{2}}{2EI_{Y}} dx + \int_{C}^{B} \frac{\left(\frac{Pa}{L}(L-X)\right)^{2}}{2EI_{Y}} dx$$

$$W_{déf} = \frac{P^2}{2EI_Y L^2} \left(b^2 \int_0^a X^2 dx + a^2 \int_a^L (L - X)^2 dx \right) = \frac{P^2}{2EI_Y L^2} \left(b^2 \left[\frac{X^3}{3} \right]_0^a + a^2 \left[\frac{(L - X)^3}{3} \right]_a^L \right)$$

Appliquons la méthode de Clapeyron : $W_{ext} = W_{d\acute{e}f}$

$$W_{ext} = \frac{1}{2}P\delta_v^C \text{ et } W_{déf} = \frac{P^2 b^2 a^2}{6 EI_Y L}$$
 En identifiant : $\delta_v^C = \frac{P b^2 a^2}{3EI_Y L}$

<u>2. MÉTHODE DE MAXWELL-MOHR ET DE</u> <u>CASTIGLIANO</u>

PROBLÈME N°8

En appliquant la méthode de MAXWELL-MOHR calculer les déplacements de A et de B. On donne : P = 30 kN, Q= 150 kN, E= 70 GPa.

RÈPONSES N°8

IUTB-LYON1-GMP-DDS

Le déplacement généralisé D_1 associé à la charge généralisée P_1 est le déplacement linéique dans la direction de P_1 de la section A.

Le déplacement généralisé D_2 associé à la charge généralisée P_2 est le déplacement linéique dans la direction de P_2 de la section B.

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \end{bmatrix} \begin{bmatrix} \mathbf{P} \end{bmatrix} \text{ ou } \begin{bmatrix} \mathbf{D}_1 \\ \mathbf{D}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{11} & \mathbf{f}_{12} \\ \mathbf{f}_{21} & \mathbf{f}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \end{bmatrix}$$
$$\mathbf{D}_1 = \mathbf{f}_{11}\mathbf{P}_1 + \mathbf{f}_{12}\mathbf{P}_2$$
$$\mathbf{D}_2 = \mathbf{f}_{21}\mathbf{P}_1 + \mathbf{f}_{22}\mathbf{P}_2$$

La matrice carrée [f] est la matrice de flexibilité de la structure.

Chaque coefficient d'influence fij est calculé par le théorème de Maxwell-Mohr

$$f_{ij} = \sum_{\text{barres}} \int_0^L \left(\frac{(n_X)_i (n_X)_j}{EA} + \frac{(t_y)_i (t_y)_j}{GA} + \frac{(t_z)_i (t_z)_j}{GA} + \frac{(m_X)_i (m_X)_j}{GI_g} \frac{(m_y)_i (m_y)_j}{EI_y} + \frac{(m_z)_i (m_z)_j}{EI_z} \right) dx$$

Pour les déterminer nous devons décomposer l'état initial E_0 , en deux états unitaires E_1 et E_2

La poutre ABC, dans les 3 états E_0 , E_1 et E_2 n'est soumise qu'à des efforts normaux :

$$f_{ij} = \int_{C}^{A} \frac{(n_{X})_{i}(n_{X})_{j}}{EA} dx$$
$$f_{ij} = \int_{C}^{A} \frac{(n_{X})_{i}(n_{X})_{j}}{EA} dx = \int_{C}^{B} \frac{(n_{X})_{i}(n_{X})_{j}}{EA_{CB}} dx + \int_{B}^{A} \frac{(n_{X})_{i}(n_{X})_{j}}{EA_{BA}} dx$$

IUTB-LYON1-GMP-DDS

Pour calculer les $f_{ij},$ nous devons chercher les diagrammes des efforts normaux dans les deux états unitaires :

$$f_{11} = \int_{0}^{800} \frac{(n_x)_1(n_x)_1}{EA_{xx}} dx + \int_{0}^{400} \frac{1 \times 1}{EA_{xx}} dx$$

$$f_{11} = \int_{0}^{800} \frac{1 \times 1}{EA_{xx}} dx + \int_{0}^{400} \frac{1 \times 1}{EA_{xx}} dx$$

$$f_{11} = \frac{1}{EA_{xx}} \int_{0}^{800} dx + \frac{1}{EA_{xx}} \int_{0}^{400} \frac{1 \times 1}{EA_{xx}} dx$$

$$f_{11} = \frac{1}{EA_{xx}} \int_{0}^{800} dx + \frac{1}{EA_{xx}} \int_{0}^{400} \frac{1 \times 1}{2A_{xx}} dx$$

$$f_{11} = \frac{1}{EA_{xx}} \int_{0}^{800} dx + \frac{1}{EA_{xx}} \int_{0}^{400} \frac{1 \times 1}{2A_{xx}} dx$$

$$f_{11} = \frac{1}{EA_{xx}} \int_{0}^{800} dx + \frac{1}{EA_{xx}} \int_{0}^{400} \frac{1 \times 1}{2A_{xx}} dx$$

$$f_{11} = \frac{1}{EA_{xx}} \int_{0}^{800} dx + \frac{1}{EA_{xx}} \int_{0}^{400} \frac{1 \times 1}{2A_{xx}} dx$$

$$f_{11} = \frac{1}{EA_{xx}} \int_{0}^{800} \frac{1 \times 1}{2A_{xx}} dx + \frac{1}{70.10^{3} \times \pi \times 30^{2}} + \frac{600 \times 4}{70.10^{3} \times \pi \times 20^{2}}$$

$$f_{11} = 4.345.10^{3}$$

$$f_{12} = \int_{0}^{800} \frac{(n_{x})_{x}(n_{x})_{x}}{(n_{x})_{x}} dx + \frac{1}{800} \frac{(n_{x})_{x}(n_{x})_{x}}}{(n_{x})_{x}} dx + \frac{1}{800} \frac{(n_{x})_{x}(n_{x})_{x}}{(n_{x})_{x}}} dx + \frac{1}{800} \frac{(n_{x})_{x}(n_{x})_{x}}{(n_{x})_{x}} dx + \frac{1}{800} \frac{(n_{x})_{x}(n_{x})_{x}}}{(n_{x})_{x}} dx + \frac{1}{800} \frac{(n_{x})_{x$$

 D_2 est positif : le déplacement de la section B s'effectue dans le même sens que celui de l'application de la charge P_2 . $\delta_B = -1,94$ mm

PROBLÈME N°9

<u>Ce problème est le même que le problème 1 qui a été résolu partiellement par la méthode de CLAPEYRON.</u>

Les barres AB et BC (de même section droite A et de même matériau) sont articulées en A, B et C. Une force verticale P_1 est appliquée en B. On veut calculer le déplacement vertical **et le déplacement horizontal** du point B par la méthode de MAXWELL-MOHR.

<u>Suggestion</u>: Rajoutez en B une force horizontale fictive P₂ pour calculer le déplacement horizontal.

P2 1°) Déterminer l'expression littérale de la matrice de flexibilité de la structure (mettre L/EA en facteur).
2°) En déduire l'expression littérale du déplacement vertical et du déplacement horizontal du point B.

<u>Application numérique</u> : P_1 =10kN, L=2m, E=200GPa et A=1cm². Calculez la valeur du déplacement vertical et du déplacement horizontal du point B (en mm).

RÈPONSES N°9

Nous allons donc travailler sur l'état E_0 . Décomposons ce dernier en deux états unitaires E_1 et $\mathsf{E}_2.$

<u>2°) Expression littérale du déplacement vertical et du déplacement horizontal du</u> point B :

Le déplacement horizontal de B s'effectue en sens inverse de la charge « fictive » P_2

PROBLÈME N°10

En appliquant la méthode de MAXWELL-MOHR et en ne tenant compte que de l'énergie de déformation élastique due au moment fléchissant, déterminez en fonction de P, L, E et d l'expression littérale du déplacement vertical et de la rotation en C. En déduire l'expression littérale de l'énergie de déformation. Application numérique : P=1425N, E=210 GPa, L=1m, et d=40mm. Calculez $W_{déf}$ en Joules.

RÈPONSES N°10

Sur le problème qui nous est proposé, nous ne pouvons déterminer que le déplacement vertical de la section C.

Nous allons donc créer un problème plus général, dont l'initial ne sera qu'un cas particulier.

Nous désirons connaître la rotation de la section C. Il est donc nécessaire qu'il existe en C un moment « fictif » porté par l'axe de la rotation cherchée . Appliquons alors en C un moment « fictif » P_2 suivant l'axe Y:

Chaque coefficient d'influence fij est calculé par le théorème de Maxwell-Mohr $f_{ij} = \sum_{barres} \int_{0}^{L} \left(\frac{(n_{X})_{i}(n_{X})_{j}}{EA} + \frac{(t_{Y})_{i}(t_{Y})_{j}}{GA} + \frac{(t_{Z})_{i}(t_{Z})_{j}}{GA} + \frac{(m_{X})_{i}(m_{X})_{j}}{GI_{G}} \frac{(m_{Y})_{i}(m_{Y})_{j}}{EI_{Y}} + \frac{(m_{Z})_{i}(m_{Z})_{j}}{EI_{Z}}\right) dx$

Dans notre cas nous ne tenons compte que de l'énergie de déformation due au moment my :

$$f_{ij} = \int_{A}^{C} \frac{(m_Y)_i (m_Y)_j}{EI_Y} dx$$

Compte tenu de la discontinuité de section en B : $f_{ij} = \int_{A}^{B} \frac{(m_Y)_i (m_Y)_j}{EI_Y^{AB}} dx + \int_{B}^{C} \frac{(m_Y)_i (m_Y)_j}{EI_Y^{BC}} dx$

<u>Calcul de f_{11} :</u>

$$f_{11} = \int_{0}^{L} \frac{(\frac{3L}{2} - X)_{1}(\frac{3L}{2} - X)_{1}}{EI_{Y}^{AB}} dx + \int_{L}^{\frac{3L}{2}} \frac{(\frac{3L}{2} - X)_{1}(\frac{3L}{2} - X)_{1}}{EI_{Y}^{BC}} dx$$

Utilisons le tableau des Intégrales de Mohr pour calculer ces intégrales :

En notation « symbolique » :
$$f_{11} = 1/EI_{Y}^{AB} \begin{pmatrix} 3L/2 \\ -L/2 \end{pmatrix}^{2} + 1/EI_{Y}^{BC} \begin{pmatrix} L/2 \\ -L/2 \end{pmatrix}^{2}$$

Or $I_{Y}^{AB} = \frac{\pi d^{4}}{16}$ et $I_{Y}^{BC} = \frac{\pi d^{4}}{64}$
 $f_{11} = 16/E\pi d^{4} \begin{pmatrix} 3L/2 \\ -L/2 \end{pmatrix}^{2} + 64/E\pi d^{4} \begin{pmatrix} L/2 \\ -L/2 \end{pmatrix}^{2}$
 $f_{11} = \frac{16}{E\pi d^{4}} \begin{cases} \frac{1}{3} \left(\left(\frac{3L}{2} \right)^{2} + \frac{3L}{2} \times \frac{L}{2} + \left(\frac{L}{2} \right)^{2} \right) L + 4 \begin{pmatrix} \frac{1}{3} \left(\frac{L}{2} \right)^{2} \frac{L}{2} \end{pmatrix} \end{cases}$
 $f_{11} = \frac{20}{E} \frac{L^{3}}{\pi d^{-4}}$

<u>Calcul de f₁₂ :</u>

$$f_{12} = \int_{0}^{L} \frac{(\frac{3L}{2} - X)_{1}(+1)_{2}}{EI_{r}^{AB}} dx + \int_{L}^{\frac{3L}{2}} \frac{(\frac{3L}{2} - X)_{1}(+1)_{2}}{EI_{r}^{BC}} dx$$

$$f_{12} = 16/E\pi d^{4} \left(\underbrace{1/2}_{L} \underbrace{1/2}_{L} \underbrace{1/2}_{L} \underbrace{1}_{L} \underbrace$$

IUTB-LYON1-GMP-DDS

Expression littérale du déplacement vertical C.

$$Dans \, l'\acute{e}tat \, \mathbf{E}_{o'} \qquad \begin{bmatrix} D \end{bmatrix}_{E_{0'}} = \begin{bmatrix} f \end{bmatrix}_{E_{0'}} \begin{bmatrix} P \end{bmatrix}_{E_{0'}} \qquad \begin{bmatrix} D_1 \\ D_2 \end{bmatrix}_{E_{0'}} = \begin{bmatrix} \delta_{v}^{C} \\ \theta_{Y}^{C} \end{bmatrix}_{E_{0'}} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}_{E_{0'}}$$

$$Dans \, l'\acute{e}tat \, \mathbf{E}_{o} \qquad \begin{bmatrix} \delta_{v}^{C} \\ \theta_{Y}^{C} \end{bmatrix}_{E_{0}} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \begin{bmatrix} P \\ 0 \end{bmatrix}_{E_{0}}$$

$$\delta_{v}^{C} = f_{11}P = \frac{20 PL^3}{E \pi d^4} \qquad \delta_{v}^{C} = 20PL^3 / E \pi d^4$$

Expression littérale de la rotation en C.

$$\begin{aligned} \text{Dans l'état } \mathbf{E}_{O'} & \left[D\right]_{E_{O'}} = \left[f\right]_{E_{O'}} \left[P\right]_{E_{O'}} & \left[\frac{D_{1}}{D_{2}}\right]_{E_{O'}} = \left[\frac{\delta_{v}^{C}}{\theta_{v}^{C}}\right]_{E_{O'}} = \left[\frac{f_{11}}{f_{22}}\right]_{P_{2}} \left[\frac{P_{1}}{P_{2}}\right]_{E_{O'}} \\ \text{Dans l'état } \mathbf{E}_{O} & \left[\frac{\delta_{v}^{C}}{\theta_{v}^{C}}\right]_{E_{O}} = \left[\frac{f_{11}}{f_{21}} \frac{f_{12}}{f_{22}}\right]_{O} \left[\frac{P}{\theta}\right]_{E_{O}} \\ \theta_{v}^{C} = f_{21}P = \frac{24PL^{2}}{E\pi d^{4}} & \mathbf{\theta}_{v}^{C} = 24PL^{2}/E\pi d^{4} \\ \frac{Expression littérale de l'énergie de déformation.}{Dans l'état } \mathbf{E}_{O'} & W_{déf} = \frac{1}{2} \left[P\right]_{I} \left[f\right]_{I} \left[P\right] = \frac{1}{2} \left[P_{1} \quad P_{2}\right]_{E_{O'}} \left[\frac{f_{11}}{f_{21}} \frac{f_{12}}{f_{22}}\right]_{E_{O'}} \left[\frac{P_{1}}{P_{2}}\right]_{E_{O'}} \\ Dans l'état E_{O'} & W_{déf} = \frac{1}{2} \left[P \quad 0\right]_{I} \left[\frac{f_{11}}{f_{21}} \frac{f_{12}}{f_{22}}\right]_{O} = \frac{1}{2} f_{11}P^{2} = \frac{10P^{2}L^{3}}{E\pi d^{4}} \end{aligned}$$

Application numérique : P=1425N, E=210 GPa, L=1m, et d=40mm.

PROBLÈME N°11

En appliquant la méthode de CASTIGLIANO et en ne tenant compte que de l'énergie de déformation élastique due au moment B fléchissant :

a) Déterminez l'expression littérale de la flèche maximum (en C) et des rotations aux extrémités A et B en fonction de P, L, E et I_I.

b) Calculer numériquement la flèche (en mm) et les rotations (en°) pour P = 12kN, L=1m; la section est un rectangle 80×40 , E = 200 GPa.

RÈPONSES N°11

Pour appliquer le théorème de Castigliano, nous devons au préalable calculer l'énergie de déformation élastique dans l'état $E_{0'}$.

$$W_{d\acute{e}f} = \sum_{barres} \int_{0}^{L} \left(\frac{N_{X}^{2}}{2EA} + \frac{T_{Y}^{2}}{2GA} + \frac{T_{Z}^{2}}{2GA} + \frac{M_{X}^{2}}{2GI_{G}} + \frac{M_{Y}^{2}}{2EI_{Y}} + \frac{M_{Z}^{2}}{2EI_{Z}}\right) dx$$

En ne tenant compte que de l'énergie due au moment fléchissant : $W_{d\acute{e}f} = \int_{A}^{B} \frac{\left(M_{Y}^{2}\right)_{E_{0'}}}{2EI_{Y}} dx$

Nous devons donc chercher le moment M_y . Pour cela, décomposons l'état $E_{0'}$ en deux états :

Pour calculer $W_{d\acute{e}f}$ nous pouvons soit faire le calcul avec l'état $E_{0'}$, soit avec les états E_1 et E_2 .

<u> Première approche :</u>

Utilisons le tableau des intégrales de Mohr avec l'état Eo.

$$W_{déf} = \int_{A}^{B} \frac{\left(M_{Y}^{2}\right)_{E_{0}}}{2EI_{Y}} dx$$

$$W_{déf} = \frac{1}{2EI_{Y}} \left\{ \begin{array}{c} 1 \\ P_{2} \\$$

Autre approche : à 'aide des états E_1 et E_2

$$W_{déf} = \frac{1}{2EI_{Y}} \int_{A}^{B} (M_{Y})_{E_{1}}^{2} dx + \frac{1}{2EI_{Y}} \int_{A}^{B} (M_{Y})_{E_{2}}^{2} dx + \frac{1}{EI_{Y}} \int_{A}^{B} (M_{Y})_{E_{1}} (M_{Y})_{E_{2}} dx$$

$$W_{déf} = \frac{1}{2EI_{Y}} \left\{ \begin{array}{c} \frac{1}{2} \left(\frac{P_{1}L}{4} \right)^{2} L \right\}^{2} + \frac{1}{2EI_{Y}} \left\{ \begin{array}{c} \frac{P_{1}}{2} \left(\frac{1}{3} \left(\frac{P_{2}}{2} \right)^{2} L \right) \right\}^{2} + \frac{1}{EI_{Y}} \left\{ \begin{array}{c} \frac{1}{2} \left(\frac{P_{1}L}{4} \times \frac{P_{2}}{2} \right) L \right\} \right\}$$

$$W_{déf} = \frac{P_{1}^{2}L^{3}}{96EI_{Y}} + \frac{P_{2}^{2}L}{6EI_{Y}} + \frac{P_{1}P_{2}L^{2}}{16EI_{Y}} \left\{ \begin{array}{c} \frac{P_{1}P_{2}L^{2}}{16EI_{Y}} \right\}$$

a) Expression littérale de la flèche maximum (en C)

Appliquons le théorème de Castigliano :
$$D_i = rac{\partial W_{d\acute{e}f}}{\partial P_i}$$

La dérivée partielle de l'énergie par rapport à P1 nous donne le déplacement associé à P1.

$$D_1^{(E_0)} = \delta_v^{C(E_0)} = \frac{\partial W_{déf}}{\partial P_1} = \frac{P_1 L^3}{48EI_Y} + \frac{P_1 L^2}{16EI_Y}$$

Revenons maintenant au problème initial, sachant que : $E_0 \equiv E_{0'} \{ P_{1=P} ; P_{2=0} \}$

$$\delta_v^{C(E_0)} = \frac{P L^3}{48EI_v}$$

a) Expression littérale des rotations aux extrémités A et B

La dérivée partielle de l'énergie par rapport à P2 nous donne le déplacement associé à P2.

$$D_{2}^{(E_{0})} = \theta_{y}^{A(E_{0})} = \frac{\partial W_{déf}}{\partial P_{2}} = \frac{P_{2}L}{3EI_{Y}} + \frac{P_{1}L^{2}}{16EI_{Y}}$$

Revenons maintenant au problème initial, sachant que : $E_0 \equiv E_{0' \{ P_1=P ; P_2=0 \}}$

$$\theta_{y}^{A(E_{0})} = \frac{PL^{2}}{16EI_{v}} = -\theta_{y}^{B(E_{0})}$$

b) Numériquement : P = 12kN, L=1m; la section est un rectangle 80×40, E = 200 GPa.

$$\delta_{\nu}^{C(E_0)} = \frac{P L^3}{48EI_Y} = \frac{12.10^3 \times 1000^3 \times 12}{48 \times 200.10^3 \times 40 \times 80^3} = 0,73mm$$

 $\delta_v^{\ C} = f_{max} = 0,73 \ mm$

$$\theta_{y}^{A(E_{0})} = \frac{PL^{2}}{16EI_{Y}} = \frac{12.10^{3} \times 1000^{2} \times 12}{16 \times 200.10^{3} \times 40 \times 80^{3}} = 2,197.10^{-3} rd \implies 0,126^{\circ}$$
$$\theta_{y}^{A} = -\theta_{y}^{B} = 0,126^{\circ}$$

PROBLÈME N°12

Considérons le système hyperstatique cicontre. On ne tient compte que du moment fléchissant pour le résoudre.

B 1°) Déterminez les expressions littérales des réactions. Tracer le diagramme des moments fléchissants.

2°) Déterminez les expressions littérales de la

flèche du point C et des rotations en C et B.

<u>Application numérique</u> : P=12kN, L=1m, E=200GPa, la section est un rectangle de 80mmx37.5mm. Calculez la valeur du déplacement vertical de C (en mm) et les rotations de B et C (en rd).

RÈPONSES N°12

Un solide pour appliquer le premier principe de Newton.

H=i-3n = 4-3 = 1 Le système est hyperstatique externe de degré $1 : H_{ext}^{1^{\circ}}$

Le « Mathématicien » ne sait pas résoudre un système ou il existe plus d'inconnues que d'équations, le « Physicien » ne faisant pas mieux , il faut donc chercher des équations de déformations, qui rajoutées à celle de statique permettront de trouver les 4 inconnues.

Notre problème est hyperstatique de degré 1. Nous allons donc choisir une inconnue hyperstatique parmi les 4 (H_A ; V_A ; V_B , M_A) afin de traiter un problème isostatique, dont l'hyperstatique ne constituera qu'un cas particulier. Plusieurs choix sont possibles pour l'inconnue hyperstatique, donc plusieurs résolutions possibles. Le chargement de l'isostatique sera celui de l'hyperstatique plus l'inconnue choisie:

Calcul de f₁₁ :

$$f_{11} = 1/EI_{Y} \left[\bigcup_{L} \int_{L} \int_{L} \frac{C(m_{Y})_{1}}{EI_{Y}} dx = \frac{1}{EI_{Y}} \times \frac{1}{3} \times L^{2} \times L \qquad f_{11} = \frac{L^{3}}{3EI_{Y}}$$

Calcul de f₂₂ :

$$f_{22} = 1/EI \left(\sum_{ZL}^{2L} \int_{A}^{B} \frac{((m_Y)_2)^2}{EI_Y} dx = \frac{1}{EI_Y} \times \frac{1}{3} \times 4L^2 \times 2L \qquad f_{22} = \frac{8L^3}{3EI_Y} \right)^2$$

Calcul de la réaction V_B :

$$P_2 = -\frac{f_{21}P_1}{f_{22}} = -\frac{\frac{5L^3}{6EI_Y}P_1}{\frac{8L^3}{3EI}}$$

Compte tenu du choix arbitraire du sens de P_2 que nous avons fait, et trouvant P_2 négatif, nous en concluons que la réaction verticale en B dans l'état hyperstatique est verticale ascendante. Sa norme étant de 5P/16.

Le problème initial est maintenant isostatique. Pour trouver les 3 inconnues externes restantes H_A ; V_A ; M_A , nous pouvons utiliser les 3 équations de statique, ou calculer sur l'état E_0 en faisant P₂=5P/16

$$E_0 \equiv E_{0'\{P1=P; D2=0\}} \equiv P_1 \times E_1 + P_2 \times E_2 \equiv P \times E_1 - (5P/16) \times E_2$$

$$H^{A}_{0} = P \times H^{A}_{1} - (5P/16) \times H^{A}_{2}$$

 $V^{A}_{0} = P \times V^{A}_{1} - (5P/16) \times V^{A}_{2}$
 $M^{A}_{0} = P \times M^{A}_{1} - (5P/16) \times M^{A}_{2}$

 $H_0^{A} = P \times 0 - (5P/16) \times 0 = 0$ $V_0^{A} = P \times 1 - (5P/16) \times 1 = 11P/16$ $M_0^{A} = P \times L - (5P/16) \times 2L = 3PL/8$

Diagramme des moments fléchissants :

Pour trouver le diagramme des moments fléchissants, nous utilisons les résultats obtenus sur l'état isostatique E_0 au lieu de tout refaire le problème initial.

 $M_{y (E0)} = P \times m_{y (E1)} - (5P/16) \times m_{y (E2)}$

```
 M_{y^{C}(E0)} = P \times m_{y^{C}(E1)} - (5P/16) \times m_{y^{C}(E2)} = P \times L - (5P/16) \times 2L = 3PL/8 
 M_{y^{C}(E0)} = P \times m_{y^{C}(E1)} - (5P/16) \times m_{y^{C}(E2)} = P \times 0 - (5P/16) \times L = -5PL/16 
 M_{y^{B}(E0)} = P \times m_{y^{B}(E1)} - (5P/16) \times m_{y^{B}(E2)} = P \times 0 - (5P/16) \times 0 = 0
```


Expressions littérales de la flèche du point C et des rotations en C et B

flèche du point C: Dans l'état $\mathbf{E}_{0'}$: $\begin{bmatrix} \delta_{v}^{C} \\ \delta_{v}^{B} \end{bmatrix}_{E_{0'}} = \begin{bmatrix} D_{1} \\ 0 \end{bmatrix}_{E_{0'}} = \frac{L^{3}}{3EI_{Y}} \begin{bmatrix} 1 & \frac{5}{2} \\ \frac{5}{2} & 8 \end{bmatrix} \begin{bmatrix} P_{1} \\ P_{2} \end{bmatrix}_{E_{0'}}$

Dans l'état $\mathbf{E}_{0} : \begin{bmatrix} \delta_{v}^{C} \\ \delta_{v}^{B} \end{bmatrix}_{E_{0}} = \frac{L^{3}}{3EI_{Y}} \begin{bmatrix} 1 & \frac{5}{2} \\ \frac{5}{2} & 8 \end{bmatrix} \begin{bmatrix} -\frac{P}{5P} \\ -\frac{5P}{16} \end{bmatrix} \qquad \delta_{v}^{C(E_{0})} = \frac{L^{3}}{3EI_{Y}} \begin{pmatrix} P - \frac{5}{2} \times \frac{5P}{16} \end{pmatrix} \qquad \boldsymbol{\delta_{v}^{C}} = \mathbf{\mathcal{TPL}^{3}} / \mathbf{\mathcal{96EI}_{Y}}$

Le déplacement s'effectue dans le même sens que celui de P_1 .

Rotations en C et B :

Pour rechercher les rotations des sections C et B il faut qu'il existe en C et B des moments portés par l'axe des rotations cherchées.

Compte tenu des résultats dont nous disposons, il sera plus simple de raisonner à partir de l'état isostatique équivalent $E_{0'}$. Cherchons donc, dans un premier temps, les rotations des sections C et B dans l'état isostatique $E_{0'}$. Rajoutons sur ce dernier 2 couples P_3 , et P_4 en C et D.

 $\begin{bmatrix} \delta_{v}^{C} \\ \delta_{v}^{B} \\ \theta_{v}^{C} \\ \theta_{y}^{B} \\ \theta_{y}^{B} \end{bmatrix}_{E_{0}} = \begin{bmatrix} \frac{L^{3}}{3EI_{Y}} & \frac{5L^{3}}{6EI_{Y}} & f_{13} & f_{14} \\ \frac{5L^{3}}{6EI_{Y}} & \frac{8L^{3}}{3EI_{Y}} & f_{23} & f_{24} \\ f_{31} & f_{32} & f_{33} & f_{34} \\ f_{y} & f_{y} & f_{y} & f_{y} \\ \end{bmatrix}_{E_{0}} \begin{bmatrix} P \\ -5P \\ 16 \\ 0 \\ 0 \end{bmatrix}_{E_{0}}$ Dans l'état Eo : Nous devons donc calculer seulement les coefficients f31, f32, f41, et f42. $f_{13} = \int_{A}^{C} \frac{(m_{Y})_{1}(m_{Y})_{3}}{EL} dx + \int_{C}^{B} \frac{(m_{Y})_{1}(m_{Y})_{3}}{EL} dx$ <u>Calcul de f₁₃ :</u> $f_{13} = 1/EI_y$ $\begin{pmatrix} L & 1 \\ L & L & L \\ L & L & L & L \end{pmatrix} + 1/EI_y$ $\begin{pmatrix} 0 & X & 0 \\ -0 & X & -0 \end{pmatrix}$ $f_{13} = \frac{1}{EI_{\nu}} \left\{ \frac{1}{2} \times 1 \times L \times L \right\} \qquad f_{13} = \frac{L^2}{2FI}$ $f_{23} = \int_{A}^{C} \frac{(m_{Y})_{2}(m_{Y})_{3}}{EL} dx + \int_{C}^{B} \frac{(m_{Y})_{2}(m_{Y})_{3}}{EL} dx$ <u>Calcul de f₂₃ :</u> $F_{23} = 1/EI_{y} \begin{pmatrix} 2L & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} + 1/EI_{y} \begin{pmatrix} L & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix}$ $f_{23} = \frac{1}{EL} \left\{ \frac{1}{2} \times 1 \times (2L+L)L \right\} \qquad \qquad f_{23} = \frac{3L^2}{2EL}$ $f_{14} = \int_{A}^{C} \frac{(m_Y)_1(m_Y)_4}{EI_Y} dx + \int_{C}^{B} \frac{(m_Y)_1(m_Y)_4}{EI_Y} dx$ <u>Calcul de f₁₄ :</u> $f_{14} = \frac{1}{EI_v} \left\{ \frac{1}{2} \times L \times 1 \times L \right\} \qquad f_{14} = \frac{L^2}{2EI_v}$

Dans l'état
$$\mathbf{E}_{0}$$
:

$$\begin{bmatrix} \delta_{v}^{C} \\ \delta_{v}^{B} \\ \theta_{y}^{C} \\ \theta_{y}^{B} \end{bmatrix}_{E_{0}} = \begin{bmatrix} \frac{L^{2}}{3EI_{Y}} & \frac{5L^{2}}{6EI_{Y}} & \frac{L^{2}}{2EI_{Y}} & \frac{L^{2}}{2EI_{Y}} \\ \frac{5L^{3}}{6EI_{Y}} & \frac{3EL^{3}}{3EI_{Y}} & \frac{3L^{2}}{2EI_{Y}} & \frac{2L^{2}}{EI_{Y}} \\ \frac{L^{2}}{2EI_{Y}} & \frac{3L^{2}}{2EI_{Y}} & f_{33} & f_{34} \\ \frac{L^{2}}{2EI_{Y}} & \frac{2L^{2}}{EI_{Y}} & f_{43} & f_{44} \end{bmatrix} \begin{bmatrix} P \\ -\frac{5P}{16} \\ 0 \\ 0 \end{bmatrix}_{E_{0}}$$

$$\theta_{y}^{C} = \frac{PL^{2}}{2EI_{y}} - \frac{3L^{2}}{2EI_{y}} \frac{5P}{16} = \frac{PL^{2}}{32EI_{y}} \qquad \qquad \theta_{y}^{C} = PL^{2}/32EI_{y}$$

$$\theta_{y}^{B} = \frac{PL^{2}}{2EI_{y}} - \frac{2L^{2}}{EI_{y}} \frac{5P}{16} = -\frac{PL^{2}}{8EI_{y}} \qquad \qquad \theta_{y}^{B} = -\frac{PL^{2}}{8EI_{y}}$$

<u>Application numérique</u> : P=12kN, L=1m, E=200GPa, la section est un rectangle de 80mm×37.5mm.

Dans le repère XYZ :

$$A_Z = \frac{11P}{16} = 8.25$$
kN $B_Z = \frac{5P}{16} = 3.75$ kN $M_{AY} = \frac{3PL}{8} = 4500$ Nm

Moments fléchissants
$$M_{yA} = \frac{3PL}{8} = 4500Nm$$
 $M_{yC} = -\frac{5PL}{16} = -3750Nm$ $M_{yB} = 0$

$$\delta_{VC} = -\frac{7PL^3}{96EI_Y} = -2.7344 \text{mm} \qquad \theta_{YC} = \frac{PL^2}{32EI_Y} = 1.171910^{-3} rd \quad \theta_{YB} = -\frac{PL^2}{8EI_Y} = -4.687510^{-3} rd$$

IUTB-LYON1-GMP-DDS

La poutre encastrée AB ci-contre, de section carrée 60×60 , est haubanée par un câble AC de diamètre 5 mm. L = 1 m, E = 200 GPa, P = 3 kN. Le système est hyperstatique. Calculez :

1°) la tension dans le câble.

2°) le déplacement vertical du point A.

RÈPONSES N°13

Deux solides (La barre AB et le cable AC),

3 inconnues en B (encastrement),

2 inconnues en A et en C (articulations) :

 $H=i-3n=7-3x^2=1$

Etat hyperstatique

E₀

45°

Le système est hyperstatique externe de degré 1 : $H_{ext}^{1^{\circ}}$

Le cable AC étant articulé à ses deux extrémités est donc soumis qu'à un effort normal.

Choisissons donc comme inconnue hyperstatique la réaction en C.

Décomposons l'état isostatique E_0 en deux états unitaires E_1 et E_2 .

Or dans l'état hyperstatique, le déplacement de C dans la direction de P_2 est nul, P_2 s'identifie alors avec la valeur de la réaction en C de l'état E_0 .

$$D_{2} = \delta_{AC}^{C} = f_{21}P_{1} + f_{22}P_{2} = 0 \implies P_{2} = -\frac{f_{21}P_{1}}{f_{22}}$$
Calcul des coefficients d'influence $f_{ij} = \sum_{barres} \int_{0}^{L} (\frac{(n_{x})_{i}(n_{x})_{j}}{EA} + \frac{(m_{y})_{i}(m_{y})_{j}}{EI_{y}}) dx$ à l'aide des intégrales de Mohr :

Calcul de f₁₁:

$$f_{11} = 1/EI_{y}^{AB} \left[L_{L} \right]_{L}^{2} = \int_{A}^{B} \frac{((m_{y})_{1})^{2}}{EI_{y}^{AB}} dx = \frac{1}{EI_{y}^{AB}} \times \frac{1}{3} \times L^{2} \times L \qquad f_{11} = \frac{L^{3}}{3EI_{y}^{AB}}$$

$$\begin{array}{l} \underline{Calcul \ de \ f_{22} :} & f_{22} = \int_{A}^{B} \underbrace{\left((m_{Y})_{2}\right)^{2}}_{EI_{Y}^{AB}} dx + \int_{A}^{C} \underbrace{\left((n_{X})_{2}\right)^{2}}_{EA^{AC}} dx \\ f_{22} = 1/EI_{Y}^{AB} \left(\underbrace{L_{Y}^{2/2}}_{L} \right)^{2} + 1/EA^{Ac} \left(\underbrace{1}_{L_{Y}^{AC}} \right)^{2} \\ f_{22} = \left\{ \underbrace{\frac{1}{EI_{Y}^{AB}} \times \frac{1}{3}}_{L} \times \left(\frac{\sqrt{2}}{2}L\right)^{2} \times L \right\} + \left\{ \underbrace{\frac{1}{EA^{AC}} \times 1^{2} \times \sqrt{2}L}_{L} \right\} \quad f_{22} = \frac{L^{3}}{6EI_{Y}^{AB}} + \frac{L\sqrt{2}}{EA^{AC}} \end{array}$$

IUTB-LYON1-GMP-DDS

Calcul de f₁₂:

$$f_{12} = \int_{A}^{B} \frac{(m_{Y})_{1}(m_{Y})_{2}}{EI_{Y}^{AB}} dx$$

$$f_{12} = 1/EI_{Y}^{AB} \begin{bmatrix} L & L\sqrt{2/2} \\ L & L\sqrt{2/2} \\ L & L \end{bmatrix}$$

$$f_{12} = -\frac{1}{EI_{Y}^{AB}} \left\{ \frac{1}{3} \times L \times \left(\frac{L\sqrt{2}}{2} \right) L \right\}$$

$$f_{12} = -\frac{\sqrt{2}L^{3}}{6EI_{Y}^{AB}}$$
Calcul de la réaction en C:

<u>Calcul de la réaction en C :</u>

$$P_{2} = -\frac{f_{21}P_{1}}{f_{22}} = -\frac{-\frac{\sqrt{2L^{3}}}{6EI_{y}^{AB}}P_{1}}{\frac{L^{3}}{6EI_{y}^{AB}} + \frac{L\sqrt{2}}{EA^{AC}}}$$

$$P_{2} = \frac{\sqrt{2}}{1 + \frac{6\sqrt{2}I_{Y}^{AB}}{L^{2}A^{AC}}}P_{1}$$

<u>1°) Tension dans le câble.</u>

Nous avons choisi arbitrairement l'inconnue de l'action en C de telle sorte que le cable AC soit tendue. Nous trouvons P_2 positif : Le cable est donc en traction.

L'effort normal dans le cable est :

$$N_{X}^{AC} = \frac{\sqrt{2}}{1 + \frac{6\sqrt{2}I_{Y}^{AB}}{L^{2}A^{AC}}}P$$

Application numérique : Section AB carrée 60×60, haubanée par un câble AC de diamètre 5 mm. L = 1 m, E = 200 GPa, P = 3 kN.

$$N_{X}^{AC} = \frac{\sqrt{2}}{1 + \frac{6\sqrt{2} \times 60^{4} \times 4}{12 \times 1000^{2} \times \pi \times 5^{2}}} 3.10^{3} = 2893N \qquad N_{X}^{AC} = 2893 N$$

2°) Déplacement vertical du point A.

$$Dans \, l'\acute{e}tat \, \mathbf{E}_{0'} \qquad \begin{bmatrix} D \end{bmatrix}_{E_{0'}} = \begin{bmatrix} f \end{bmatrix}_{E_{0'}} \begin{bmatrix} P \end{bmatrix}_{E_{0'}} \qquad \begin{bmatrix} D_1 \\ D_2 \end{bmatrix}_{E_{0'}} = \begin{bmatrix} \delta_v^A \\ \delta_c^C \end{bmatrix}_{E_{0'}} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}_{E_{0'}}$$
$$Dans \, l'\acute{e}tat \, \mathbf{E}_{0} \qquad \begin{bmatrix} \delta_v^A \\ 0 \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \begin{bmatrix} 3000 \\ 2893 \end{bmatrix}$$

$$\delta_{v}^{A} = f_{11}3000 + f_{12}2893 = \frac{L^{3}}{3EI_{v}^{AB}}3000 - \frac{\sqrt{2}L^{3}}{6EI_{v}^{AB}}2893 = \frac{L^{3}}{3EI_{v}^{AB}}\left(3000 - \frac{\sqrt{2}}{2}2893\right)$$
$$\delta_{v}^{A} = \frac{1000^{3} \times 12}{3 \times 200.10^{3} \times 60^{4}}\left(3000 - \frac{\sqrt{2}}{2}2893\right) = 1,473mm \qquad \delta_{v}^{A} = 1,477mm$$

PROBLÈME N°14

La poutre encastrée AB ci-contre a son extrémité libre qui repose en A sur un appui élastique modélisé par un ressort dont la raideur est k. Le système set hyperstatique.

En l'absence de la charge répartie, la poutre est rectiligne et le ressort n'est pas sollicité.

On ne tient compte que du moment fléchissant pour résoudre le système.

1°) Déterminez l'expression littérale de la force qui comprime le ressort et en déduire l'expression de la flèche du ressort.

2°) Calculez numériquement la force qui comprime le ressort et la flèche du ressort pour k = 0.1, 0.5, 1, 10 N/mm et $k \rightarrow \infty$ La barre est à section carrée 10×10, ρ = 7.85 10⁻⁶ kg/mm³ (prendre g=10m/s²), L = 1 m, E = 210 GPa.

RÈPONSES N°14

Les 2 états seront équivalents lorsque le déplacement vertical de la section A de létat isostatique sera égal à la flèche δ_x du ressort.

Décomposons l'état isostatique E_{0} en 2 états unitaires, afin de calculer $D_2=\delta_x$ (flèche du ressort), à l'aide de Maxwell-Mohr.

Application numérique : La barre est à section carrée 10×10, ρ = 7.85 10⁻⁶ kg/mm³ (prendre g=10m/s²), L = 1 m, E = 210 GPa

$$F_{A} = \frac{3 \times 10 \times 10 \times 1000 \times 7,85.10^{-6} \times 10}{8} \left(\frac{1}{1 + \frac{3 \times 210.10^{3} \times 10^{4}}{12 \times 1000^{3} \times k}}\right)$$

$$F_A = 2,94375 \left(\frac{1}{1 + \frac{0,525}{k}}\right)$$

<u> Pour k=0 :</u>

$$\delta_{v}^{A} = -\frac{L^{4}q}{8EI_{Y}} = -\frac{L^{3}P}{8EI_{Y}} = -\frac{1000^{3} \times 10 \times 10 \times 1000 \times 7,85.10^{-6} \times 10 \times 12}{8 \times 210.10^{3} \times 10^{4}} = 5,60714mm$$

<u>Pour k= ∞ :</u>

La force $\mathbf{F}_{\mathbf{A}}$ tend vers $F_{A} = \frac{3P}{8} = 2,94$ N , et la flèche f tend vers 0 :

PROBLÈME N°15

Avant d'appliquer la charge répartie, un espace de 12 mm existe entre la poutre et l'appui C. Sachant que l'inertie de flexion vaut 217 10° mm⁴, calculez (en kN) les réactions sur chaque appui (prendre E = 200 GPa). On ne tient compte que du moment fléchissant.

RÈPONSES N°15

La réaction verticale en C dans l'hyperstatique vaut donc : $V_C = -\frac{5q'L}{8} = -\frac{5 \times 16 \times 10}{8} = -100kN$

Les deux autres réaction verticales en A et B sont égales (symétrie), et valent en écrivant l'équilibre : $V_A=V_B=-$

Nous pouvons maintenant revenir au problème initial en superposant les résultats obtenus respectivement sur l'état isostatique et sur l'hyperstatique.

PROBLÈME N°16

Considérons le cadre fermé ci-contre. Le système est hyperstatique. On ne tient compte que du moment fléchissant pour résoudre le système.

Déterminez le moment de flexion maximum (en Nmm), la contrainte de flexion maximum (en MPa) et l'allongement du cadre (en mm).

La section droite du cadre est rectangulaire 8×25. Le matériau est un acier dont le module de YOUNG vaut 210 GPa. La force P vaut 50 N.

RÈPONSES N°16

Le cadre est statiquement déterminé, et en équilibre sous l'action des deux charges P. Par contre il est impossible de déterminer les actions internesdu Torseur de section (ou de Cohésion) compte tenu qu'il est fermé.

En effet nous ne pouvons pas mettre en équilibre un tronçon isolé, puisque nous ne pouvons pas définir un Amont ou un Aval par rapport à une coupure (Le cadre est fermé).

 $F = \frac{E^{tat}}{E_0} + \frac{L}{2=300}$ $F = \frac{E^{tat}}{H_{int}} + \frac{3^{\circ}}{L=600}$

Le système est *Hyperstatique Interne de degré 3*, car les inconnues que nous ne pouvons calculer sont les sollicitations du Torseur de Section.

Ρ

Les inconnues sont :

 N_x ; T_y ; M_z .

Rendons le système isostatique en y pratiquant un nombre de coupures simples, égal à son degré d'hyperstaticité.

Le cadre étant H_{int}3° faisons une coupure totale dans une section quelconque H

(triple : N_X ;T_Y ;M_Z) H devient H' et H"

Appliquons des sollicitations N_X ; T_y ; M_z aux deux lèvres de la coupure, égales et opposées et d'intensité telles que nous refermions exactement la coupure.

> $\delta_{h}^{H'/H''} = 0$ $\delta_{v}^{H'/H''} = 0$ $\theta_{z}^{H'/H''} = 0$

Ce sont des déplaçements relatifs

Nous pouvons simplifier la résolution en se souvenant qu'un axe de symétrie nous permet d'abaisser le degré d'hyperstaticité du système.

Faisons intervenir l'axe de symétrie vertical AE en considérant la coupure en A :

A devient A' et A" Appliquons des sollicitations N_{X} : T_{Y} : M_{Z} aux deux lèvres de la coupure, égales et opposées. L'effort tranchant Ty dans la section A" est vertical descendant pour respecter Etat isostatique le principe d'action mutuelle. Equivalent Il doit être vertical ascendant pour Ρ respecter la condition de symétrie. La seule valeur possible est donc $T_y=0$ Pour refermer exactement la coupure : $\delta_h^{H'/H''} = 0$ $\theta_{z}^{H'/H''} = 0$

Décomposons l'état isostatique $E_{0'}$ en 2 états unitaires, afin de calculer $D_2,$ à l'aide de Maxwell-Mohr.

Dans l'état
$$\mathbf{E}_{o'}$$
 $\begin{bmatrix} D \end{bmatrix}_{E_{0'}} = \begin{bmatrix} f \end{bmatrix}_{E_{0'}} \begin{bmatrix} P \end{bmatrix}_{E_{0'}} \begin{bmatrix} D_1 \\ D_2 \end{bmatrix}_{E_{0'}} = \begin{bmatrix} \delta_h^{C/F} \\ \theta_Z^{A'/A''} \end{bmatrix}_{E_{0'}} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}_{E_{0'}}$
 $D_2 = \theta_Z^{A'/A''} = f_{21}P_1 + f_{22}P_2 = 0 \implies P_2 = -\frac{f_{21}P_1}{f_{22}}$

Calcul des coefficients d'influence $f_{ij} = \sum_{barres} \int_{0}^{L} (\frac{(m_Z)_i (m_Z)_j}{EI_Z}) dx$ à l'aide des intégrales de Mohr :

Allongement du cadre :

Il nous faut donc déterminer le déplacement relatif des sections C par rapport à F horizontalement. Nous allons encore travailler avec l'état E_0 '.

$$\begin{aligned} \text{Dans l'état } \mathbf{E}_{0'} \quad \left[D\right]_{E_{0'}} = \left[f\right]_{E_{0'}} \left[P\right]_{E_{0'}} \quad \left[D_{1} \atop D_{2}\right]_{E_{0'}} = \left[\delta_{h}^{C/F} \atop \partial_{Z}^{A'/A''}\right]_{E_{0'}} = \left[f_{11} \quad f_{12} \atop f_{21} \quad f_{22}\right] \left[P_{1} \atop P_{2}\right]_{E_{0'}} \\ D_{1} = \delta_{h}^{C/F} = f_{11}P_{1} + f_{12}P_{2} \\ \end{aligned}$$

$$\begin{aligned} \text{Dans l'état } \mathbf{E}_{0} \quad \delta_{h}^{C/F} = f_{11}P + f_{12}\left(\frac{PL}{16}\right) \\ \end{aligned}$$
Nous devons donc calculer f_{11}. \end{aligned}

$$\begin{array}{ll} \underline{Calcul \ de \ f_{11}}: & f_{11} = 4 \times \left(\int_{A}^{B} \frac{((m_{Z})_{1})^{2}}{EI_{Z}} dx + \int_{B}^{C} \frac{((m_{Z})_{1})^{2}}{EI_{Z}} dx \right) \\ & f_{11} = 4 \sqrt{EI_{Z}} \left(\underbrace{I_{Z}}_{L/2} \right)^{2} \\ f_{11} = 4 \sqrt{EI_{Z}} \left(\underbrace{I_{Z}}_{L/2} \right)^{2} \\ & f_{11} = \frac{L^{3}}{24EI_{Z}} \\ & \delta_{h}^{C/F} = \frac{L^{3}}{24EI_{Z}} P - \frac{L^{2}}{4EI_{Z}} \times \left(\frac{PL}{16} \right) \\ & \delta_{h}^{C/F} = \frac{5PL^{3}}{192EI_{Z}} = \frac{5 \times 50 \times 600^{3} \times 12}{192 \times 210.10^{3} \times 25 \times 8^{3}} = 1,26mm \\ & \text{Allongement du cadre :} \\ & \delta_{h}^{C/F} = 1,26mm \\ \end{array}$$

CALCUL DES STRUCTURES PAR LES MÉTHODES ÉNERGÉTIQUES

1. DUALITÉ FORCES-DÉPLACEMENTS :

Soit à résoudre la structure **plane** ci-dessus. Les inconnues du problème peuvent se classer en deux catégories :

- Les <u>inconnues statiques</u> : les quatre réactions A_x , A_y , M_{Az} et B_y . Le système comportant quatre inconnues statiques pour trois équations d'équilibre est hyperstatique de degré 1.

- Les <u>inconnues cinématiques</u> : les déplacements v_c , θ_{zB} et θ_{zC} . Pour résoudre le problème on peut procéder de deux façons inverses l'une de l'autre.

<u>1°) La méthode des forces :</u>

La méthode des forces consiste à calculer d'abord les **4 inconnues statiques** Ax, Ay, MAz et By (<u>inconnues primaires</u>), puis les **3 inconnues cinématiques** v_c, θ_{zB} et θ_{zC} (<u>inconnues secondaires</u>).

2°) La méthode des déplacements :

La méthode consiste à calculer d'abord les 3 inconnues cinématiques v_c, θ_{zB} et θ_{zC} (inconnues primaires), puis les 4 inconnues statiques A_x , A_y , M_{Az} et B_y (inconnues secondaires) Dans un cas comme dans l'autre (méthode des forces ou des déplacements), la méthode de calcul est essentiellement matricielle et est basée sur le principe de conservation de l'énergie :

$$W_{ext} = W_{déf}$$

Le travail du torseur extérieur se calcule par :

$$W_{ext} = \frac{1}{2} [P][D]$$

Si la structure est une poutre l'énergie de déformation se calcule par :

$$W_{d\acute{e}f} = \frac{1}{2} \int_{V_0} \left(\frac{\sigma^2}{E} + \frac{\tau^2}{G} \right) dv$$

Dans la méthode des forces (ou méthode de la flexibilité) le système matriciel se présente sous la forme :

[D]=[f][P]	
------------	--

La matrice symétrique [f] est la matrice de flexibilité de la structure. Le vecteur [P] contient les charges appliquées sur la structure **et les inconnues hyperstatiques**. Le vecteur [D] contient les déplacements associés.

Dans la méthode des déplacements (ou méthode de la rigidité) le système matriciel se présente sous la forme :

La matrice symétrique [k] est la matrice de rigidité de la structure. Le vecteur [P] contient les charges appliquées **et les inconnues hyperstatiques**. Le vecteur [D] contient les déplacements associés.

Ces deux méthodes sont inverses l'une de l'autre :

$$[k]^{-1} = [f]$$

Il existe des méthodes spécifiques (exposées dans la suite de ce chapitre) pour calculer :

- <u>La matrice de flexibilité [f]</u> :
 - ▶ Méthode de la « charge unité » (ou méthode de MAXWELL-MOHR).
- <u>La matrice de rigidité [k]</u> :

Méthode du « déplacement unité », qui est l'inverse de la méthode de la « charge unité ».

Méthode des « Éléments Finis ».

Dans la « Méthode des Éléments Finis » le vecteur [P] contient toutes les charges (y compris les réactions isostatiques) et le vecteur [D] tous les déplacements associés. La matrice de rigidité « globale », symétrique, est alors notée [K]. Elle est donc d'un ordre plus grand (+3 dans le plan et +6 dans l'espace) que le matrice de rigidité [k] calculée avec la méthode du déplacement unité.

2. MÉTHODE DES FORCES OU DE LA FLEXIBILITÉ DE LA STRUCTURE:

2.1. Méthode de CLAPEYRON :

2.1.1. Définition :

C'est une méthode analytique permettant de calculer dans des systèmes isostatiques soumis à une seule charge le déplacement associé (qui fait travailler) la charge.

A titre d'exemple on peut traité le cas d'une barre droite soumise à une seule charge P. Le travail du torseur extérieur vaut :

$$W_{ext} = \frac{1}{2} P D$$

Le travail de déformation élastique vaut :

$$W_{déf} = \frac{1}{2} \int_{V_0} \left(\frac{\sigma^2}{E} + \frac{\tau^2}{G} \right) dv$$

Le principe de conservation de l'énergie permet d'écrire :

$$W_{ext} = W_{déf}$$

$$\frac{1}{2}PD = \frac{1}{2}\int_{V_0} (\frac{\sigma^2}{E} + \frac{\tau^2}{G})dv$$
$$D = \frac{1}{P}\int_{V_0} (\frac{\sigma^2}{E} + \frac{\tau^2}{G})dv$$

2.1.2. Expression de l'énergie de déformation élastique dans une structure à barres (droites) en fonction des efforts internes dans les barres :

N.B. La contrainte due à l'effort tranchant est la contrainte moyenne. Les axes Y et Z sont les axes principaux d'inertie de la section droite.

$$W_{déf} = \frac{1}{2} \int_{V_0} \left(\frac{\sigma^2}{E} + \frac{\tau^2}{G} \right) dv$$

$$W_{déf} = \frac{1}{2} \int_{V_0} \left\{ \frac{1}{E} \left(\frac{N_X}{A} - \frac{M_Z}{I_Z} Y + \frac{M_Y}{I_Y} Z \right)^2 + \frac{1}{G} \left(\left(\frac{T_Y}{A} - \frac{M_X}{I_G} Z \right)^2 + \left(\frac{T_Z}{A} + \frac{M_X}{I_G} Y \right)^2 \right) \right\} dv$$

Compte tenu que les composantes du torseur de section sont constantes dans la section droite qui est elle-même constante le long de la barre :

$$\int_{V} \left\{ \right\} dv = \int_{0}^{L} \left[\int_{A} \left\{ \right\} dA \right] dx$$
$$W_{déf} = \frac{1}{2} \int_{0}^{L} \left[\int_{A} \left\{ \frac{1}{E} \left(\frac{N_{X}}{A} - \frac{M_{Z}}{I_{Z}}Y + \frac{M_{Y}}{I_{Y}}Z \right)^{2} + \frac{1}{G} \left(\left(\frac{T_{Y}}{A} - \frac{M_{X}}{I_{G}}Z \right)^{2} + \left(\frac{T_{Z}}{A} + \frac{M_{X}}{I_{G}}Y \right)^{2} \right) \right] dA \right] dx$$

En développant, et compte tenu que :

$$A = \int_{A} dA$$

$$I_{Y} = \int_{A} Z^{2} dA$$

$$I_{Z} = \int_{A} Y^{2} dA$$

$$I_{G} = \int_{A} (Y^{2} + Z^{2}) dA$$

$$I_{YZ} = \int_{A} YZ dA = 0$$

$$Q_{Y} = \int_{A} Z dA = Z_{G} A = 0$$

$$Q_{Z} = \int_{A} Y dA = Y_{G} A = 0$$

On obtient l'expression de l'énergie de déformation élastique dans une barre en fonction des composantes du torseur de section :

$$W_{déf} = \int_{0}^{L} \left(\frac{N_{x}^{2}}{2EA} + \frac{T_{y}^{2}}{2GA} + \frac{T_{z}^{2}}{2GA} + \frac{M_{x}^{2}}{2GI_{g}} + \frac{M_{y}^{2}}{2EI_{y}} + \frac{M_{z}^{2}}{2EI_{z}} \right) dx$$

Si la structure comporte plusieurs barres :

$$W_{d\acute{e}f} = \sum_{barres} \int_0^L \left(\frac{N_x^2}{2EA} + \frac{T_y^2}{2GA} + \frac{T_z^2}{2GA} + \frac{M_x^2}{2GI_G} + \frac{M_y^2}{2EI_y} + \frac{M_z^2}{2EI_z} \right) dx$$

2.2. Méthode de MAXWELL-MOHR ou méthode dite de la "charge unité" :

C'est une méthode matricielle qui permet de résoudre les systèmes hyperstatiques et de calculer des déplacements quelconques dans des systèmes isostatiques ou hyperstatiques.

2.2.1. Matrice de flexibilité d'une structure à barres:

1°) Définition : Considérons une barre droite soumise à deux forces P_1 et P_2 . Notons D_1 et D_2 les déplacements associés (qui font travailler) les deux forces.

Décomposons l'état initial en deux états <u>unitaires</u> (les forces valent 1). Dans un cas plus général on décompose l'état initial en autant d'états unitaires qu'il y a de charges appliquées.

On note alors f_{ij} les déplacements D_1 et D_2 dans les états 1 et 2 avec la signification suivante pour les indices i et j :

Etat 1 : $P_1=1$, $P_2=0$

Etat 2 : $P_2=1$, $P_1=0$

Les principes de superposition et de linéarité des effets des forces permettent d'écrire :

La matrice carrée [f] est la matrice de flexibilité de la structure.

2°) Théorème de MAXWELL-BETTI :

Considérons une barre droite soumise à deux forces P_1 et P_2 . Notons D_1 et D_2 les déplacements associés (qui font travailler) les deux forces.

En calculant le travail du torseur extérieur en appliquant :1°) P₁ puis P₂.ou 2°) P₂ puis

P1 et en identifiant les 2 expressions, on démontre que :

La matrice de flexibilité est symétrique.

Autrement dit, le déplacement projeté sur P_1 et provoqué par $P_2=1$ (f_{12}) est égal au déplacement projeté sur P_2 et provoqué par $P_1=1$ (f_{21}).

2.2.2. Expression du travail du torseur extérieur en fonction de la matrice de flexibilité :

$$\mathbf{W}_{\mathsf{ext}} = \frac{1}{2}^{\mathsf{t}} [\mathbf{P}] [\mathbf{D}] \; \mathsf{et} \; [\mathbf{D}] = [\mathbf{f}] [\mathbf{P}]$$

$$W_{ext} = \frac{1}{2} [P] f] P$$

2.2.3. Calcul des termes de la matrice de flexibilité:

Considérons une barre droite soumise à deux forces P_1 et P_2 .

Décomposons l'état initial en deux états <u>unitaires</u> (les forces valent 1).

Etat 1 : $P_1=1$, $P_2=0$

Etat 2 : P₂=1, P₁=0

On ne considère pour la démonstration que le moment fléchissant M_Z . La démonstration est identique pour les autres sollicitations.

Les principes de superposition et de linéarité des effets des forces permettent d'écrire :

superposition

$$M_{Z} = (\mathbf{m}_{z})_{1} \mathbf{P}_{1} + (\mathbf{m}_{z})_{2} \mathbf{P}_{2} \quad W_{déf} = \int_{0}^{L} \frac{M_{Z}^{2}}{2EI_{Z}} dx \qquad W_{ext} = \frac{1}{2} \left[P \left[f \right] f \left[P \right] \right]$$

linéarité

Le principe de conservation de l'énergie ($W_{ext} = W_{déf}$), permet d'écrire, en identifiant terme à terme les expressions de W_{ext} et $W_{déf}$ et en généralisant aux six sollicitations et pour un système comportant plusieurs barres on obtient :

2.3. Méthode de CASTIGLIANO :

C'est une méthode analytique qui permet de résoudre les systèmes hyperstatiques et de calculer des déplacements quelconques dans des systèmes isostatiques ou hyperstatiques.

$$W_{ext} = \frac{1}{2} [P] [f] [P] \quad \text{et} \quad W_{ext} = W_{déf}$$
$$\mathbf{D}_{\mathbf{i}} = \frac{\partial \mathbf{W}_{déf}}{\partial \mathbf{P}_{\mathbf{i}}}$$

L'énergie de déformation étant exprimée en fonction de toutes les charges, la dérivée partielle de l'énergie de déformation élastique par rapport à l'une quelconque des charges est égale au déplacement associé à la charge.

<u>3. MÉTHODE DES ÉLÉMENTS FINIS</u>

PROBLÈME N°17

Considérons la poutre à section droite variable ci-contre. Le module de YOUNG E vaut 2.10⁵ MPa, L=1 m. La poutre est encastrée à ses deux extrémités et est soumise à une charge axiale P=10kN.

La poutre est discrétisée en trois éléments poutre et quatre nœuds. L'aire A

vaut 10 mm².

1°) Calculez les matrices de rigidité élémentaire des trois éléments sous la forme : 4.10³[].

2°) Calculez la matrice de rigidité globale de la structure (sous la forme : 4.10^{3} []).

3°) Calculez les déplacements axiaux des nœuds 2 et 3 (en mm), puis les efforts axiaux sur les nœuds 1 et 4 (en kN).

4°) Calculez le déplacement axial, la déformation axiale et la contrainte (en MPa) au milieu de l'élément 2.

RÈPONSES N°17

La poutre droite à section variable est encasrée à ses deux extrémités. La charge P étant axiale, seules les réactions horizontales existent, et le problème est donc hyperstatique externe de degré 1.

TD-2A-S4-F412

Discrétisons la poutre en 3 éléments et 4 nœuds . Dans notre cas les axes locaux et globaux coïncident. Chaque élément, compte tenu du chargement, n'est soumis qu'à des efforts normaux. Chaque nœud admet un déplacement u suivant x.

Calculons les matrices de rigidité élémentaires.

<u>Elément 1 :</u>

$$\begin{bmatrix} k^{1} \end{bmatrix} = \frac{\text{E2A}}{\frac{\text{L}}{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} k^{1} \end{bmatrix} = \frac{2.10^{5} \times 2 \times 10}{\frac{1000}{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} k^{1} \end{bmatrix} = 4.10^{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$
$$\begin{bmatrix} F_{x1}^{1} \\ F_{x2}^{1} \end{bmatrix} = 4.10^{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

<u>Elément 2 :</u>

<u>Elément 3 :</u>

4)

Déterminons les efforts d'extrémités de l'élément 2 :

$$\begin{bmatrix} F_{x2}^{2} \\ F_{x3}^{2} \end{bmatrix} = 4.10^{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{3} \end{bmatrix}$$
$$\begin{bmatrix} F_{x2}^{2} \\ F_{x3}^{2} \end{bmatrix} = 4.10^{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 0.9375 \\ 0.625 \end{bmatrix}$$
$$\begin{bmatrix} F_{x3}^{2} \\ -2 & 2 \end{bmatrix} = 4.10^{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 0.9375 \\ 0.625 \end{bmatrix} = 4.10^{3} \begin{bmatrix} 2 \times 0.9375 - 2 \times 0.625 \\ -2 \times 0.9375 + 2 \times 0.625 \end{bmatrix} = \begin{bmatrix} 2500 \\ -2500 \end{bmatrix}$$

L'élément est donc soumis à un effort de compression de 2,5 kN

La contrainte vaut pour tout point:

$$\sigma_{xx} = \frac{N_x}{A} = \frac{-2500}{2 \times 10} = -125MPc$$

La déformation associée vaut :

$$\varepsilon_{xx} = \frac{\sigma_{xx}}{E} = \frac{-125}{2.10^5} = 625.10^{-6}$$

La matrice d'interpolation des déplacements [A] en traction-compression est :

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 - \frac{X}{L} & \frac{X}{L} \end{bmatrix}$$

$$u(x) = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} D^2 \end{bmatrix} \qquad \qquad u(x) = \begin{bmatrix} 1 - \frac{X}{L} & \frac{X}{L} \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$

$$u(\frac{L}{2}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = 0,78125mm$$
PROBLÈME N°18

Avant d'appliquer la charge horizontale P un jeu "j" existe entre l'extrémité droite de la poutre et l'appui de droite. La poutre est modélisée par deux éléments "poutre" et trois nœuds.

1°) Déterminer sous forme littérale les matrices de rigidité élémentaires et la matrice de rigidité totale en fonction de L, E et A (mettre 2EA/L en facteur).

2°) E=200GPa, A=5cm2, L=1m et P=100kN. Calculer:

a) Le jeu "j" pour que la poutre arrive juste en contact avec la liaison de droite. b) Le jeu "j" pour qu'un l'effort de compression de 10kN s'exerce dans l'élément 2.

RÈPONSES N°18

Calculons les matrices de rigidité élémentaires.

Elément 1 :

Détermination de la matrice de rigidité K de la structure :

Procédons à l'assemblage des 2 matrices de rigidité élémentaires :

$$\begin{bmatrix} k^{1} \end{bmatrix} = \frac{2EA}{L} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \qquad \begin{bmatrix} k^{2} \end{bmatrix} = \frac{2EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} K \end{bmatrix} = \frac{2EA}{L} \begin{bmatrix} 2 & -2 & 0 \\ +2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1^{o} \end{pmatrix}$$
$$\begin{bmatrix} F_{X1} \\ F_{X2} \\ F_{X3} \end{bmatrix} = \frac{2EA}{L} \begin{bmatrix} 2 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_{2} \\ u_{3} \end{bmatrix}$$

a) Jeu "j" pour que la poutre arrive juste en contact avec la liaison de droite.

Appliquons les conditions limites :

La résolution des équations 2 et 3 du système nous permet de trouver u₂ et u₃.

$$\begin{cases} P = \frac{2EA}{L} (3u_2 - u_3) \\ 0 = \frac{2EA}{L} (-u_2 + u_3) \end{cases} \begin{cases} 100.10^3 = \frac{2 \times 200.10^3 \times 5.10^2}{1000} (3u_2 - u_3) \\ -u_2 + u_3 = 0 \end{cases} u_2 = u_3 = 0.25mm \\ J = 0, 25 mm \end{cases}$$

b) Le jeu "j" pour qu'un effort de compression de 10kN s'exerce dans l'élément 2.

Appliquons les conditions limites :

F_{X1}	0.54	2	- 2	0	0
+ P	$=\frac{2EA}{I}$	-2	3	-1	<i>u</i> ₂
$-\frac{r}{10}$	L	0	-1	1	<u>u</u> 3

La résolution des équations 2 et 3 du système nous permet de trouver u_2 et u_3 .

$$P = \frac{2EA}{L}(3u_2 - u_3) \\ -\frac{P}{10} = \frac{2EA}{L}(-u_2 + u_3) \\ = \frac{PL}{20EA} = -u_2 + u_3 \\ u_3 = \frac{7PL}{40EA} = 0,175mm$$

J=0,175 mm

PROBLÈME N°19

<u>Ce problème est le même que le problème 9 qui a été résolu par la méthode de MAXWELL-MOHR.</u>

Les barres (1) et (2) de même section droite A et de même matériau) sont articulées en 1, 2 et 3. Une force verticale P est appliquée en 2.

1°) Déterminez les matrices de rigidité élémentaire des deux éléments en fonction de E, A et L et dans le repère global X,Y. Écrire ces matrices sous la forme :

$$\left[k^{1}\right] = \frac{\mathcal{E}\mathcal{A}}{\mathcal{L}}\left[\right] \qquad \left[k^{2}\right] = \frac{\sqrt{2}}{4}\frac{\mathcal{E}\mathcal{A}}{\mathcal{L}}\left[\right]$$

2°) Déterminez sous forme littérale la matrice de rigidité de la structure dans le repère global X, Y. Écrire cette matrice sous la forme :

$$\left[\mathcal{K}\right] = \frac{\mathcal{E}\mathcal{A}}{\mathcal{L}}\left[\right]$$

3°) Calculez (en mm) le déplacement horizontal et le déplacement vertical du noeud 2 pour A= 1cm², E= 200 GPa, L= 2m, P= 10kN et la valeur (en kN) des réactions sur les nœuds 1 et 3.

4°) Calculez les efforts axiaux dans les éléments 1 et 2.

RÈPONSES N°19

1°) Matrices de rigidité élémentaire des deux éléments en fonction de E, A et L et dans le repère global X, Y.

Le problème est à 2 degrés de liberté, u_x suivant X et v_y suivant Y (X,Y étant le repère global) *Elément 1 :*

Dans les axes locaux xy

2°) Matrice de rigidité de la structure dans le repère global X, Y.

Procédons à l'assemblage des 2 matrices de rigidité élémentaires :

$$\begin{bmatrix} k^{1} \end{bmatrix}_{XY} = \frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} k^{2} \end{bmatrix}_{X,Y} = \frac{EA}{L} \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \sqrt{2} & \sqrt{2} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0$$

 $\sqrt{2}$

4

12

 $\sqrt{2}$

12

3°) Déplacement horizontal et déplacement vertical du noeud 2 :

$$\begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} D \end{bmatrix} \qquad \begin{bmatrix} F_{X1} \\ F_{Y1} \\ F_{X2} \\ F_{Y2} \\ F_{Y2} \\ F_{Y3} \end{bmatrix}_{/XY} = \begin{bmatrix} EA \\ L \\ 0 & 0 \\ -1 &$$

Appliquons les conditions limites :

$$\begin{bmatrix} F_{X1} \\ F_{Y1} \\ 0 \\ -10^{4} \\ F_{X3} \\ F_{Y3} \end{bmatrix}_{/XY} = \frac{EA}{L} \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ -\frac{0}{2} & -0 & -\frac{0}{2} & 0 & 0 & -\frac{0}{2} \\ -1 & 0 & (1 + \frac{\sqrt{2}}{4}) & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ u_{X2} \\ v_{Y2} \\ 0 \\ 0 \end{bmatrix}_{/XY}$$

La résolution des équations 3 et 4 du système nous permet de trouver u_{X2} et v_{y2} .

$$\begin{cases} 0 = \frac{EA}{L} \left((1 + \frac{\sqrt{2}}{4}) u_{x2} - \frac{\sqrt{2}}{4} v_{y2} \right) \\ -10^4 = \frac{EA}{L} \left(-\frac{\sqrt{2}}{4} u_{x2} + \frac{\sqrt{2}}{4} v_{y2} \right) \\ \left(-10^4 = \frac{200.10^3 \times 100 \times \sqrt{2}}{2.10^3 \times 4} \left(-u_{x2} + v_{y2} \right) \right) \\ \left\{ \begin{array}{l} 0 = (1 + \frac{\sqrt{2}}{4}) u_{x2} - \frac{\sqrt{2}}{4} v_{y2} \\ \frac{-10^4 \times 2.10^3 \times 4}{200.10^3 \times 100 \times \sqrt{2}} = -u_{x2} + v_{y2} \end{array} \right. \\ \left\{ \begin{array}{l} u_{x2} = -1mm \\ v_{y2} = -3,828mm \end{array} \right. \\ \left\{ \begin{array}{l} \delta_{H2} = -1 mm \\ \delta_{V2} = -3,83 mm \end{array} \right. \end{cases}$$

Réactions sur les nœuds 1 et 3 :

$$\begin{bmatrix} F_{X1} \\ F_{Y1} \\ 0 \\ -10^{4} \\ F_{X3} \\ F_{Y3} \end{bmatrix}_{/XY} = 10^{4} \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ -0 & -0 & 0 & 0 & -0 & 0 \\ -1 & 0 & (1 + \frac{\sqrt{2}}{4}) & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \end{bmatrix}_{/XY}$$

La résolution des équations 1, 2, 5 et 6 du système nous permet de trouver les réactions.

$$\begin{bmatrix} F_{X1} \\ F_{Y1} \\ 0 \\ -10^{4} \\ F_{X3} \\ F_{Y3} \end{bmatrix}_{/XY} = 10^{4} \begin{bmatrix} 1 & 0 & | & -1 & 0 & | & 0 & 0 \\ -0 & -0 & | & 0 & | & 0 & | & 0 & -0 \\ -1 & 0 & | & (1 + \frac{\sqrt{2}}{4}) & -\frac{\sqrt{2}}{4} & | & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} \\ 0 & 0 & | & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & | & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & | & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}}{4} & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ 0 & 0 & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} & | & \frac{\sqrt{2}}{4} & -\frac{\sqrt{2}}{4} \\ \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -1 \\ -3,83 \\ 0 \\ 0 \end{bmatrix}_{/XY} \begin{bmatrix} F_{X3} = 10^{4} \left(\frac{\sqrt{2}}{4} - 3,83\frac{\sqrt{2}}{4} \right) \\ F_{Y3} = 10^{4} \left(-\frac{\sqrt{2}}{4} + 3,83\frac{\sqrt{2}}{4} \right) \\ F_{Y3} = 10^{4} \left(-\frac{\sqrt{2}}{4} + 3,83\frac{\sqrt{2}}{4} \right) \end{bmatrix}$$

PROBLÈME N°20

<u>Ce problème est le même que le problème 12 qui a été résolu par la méthode de MAXWELL-MOHR.</u>

P=12kN, L=1m, E=200GPa, la section est un rectangle de 80mm×37.5mm.

1°) Déterminez sous forme numérique (en N/m) la matrice de rigidité de la poutre ci-contre (discrétiser en deux éléments de longueur L et trois nœuds).

2°) En déduire les valeurs numériques de v_2 (en mm), de θ_{z2} , θ_{z3} (en rd) et des réactions sur les nœuds 1 et 3 (en kN pour les forces, Nm pour les moments). Tracez le diagramme des moments fléchissants sur les éléments 1 et 2.

3°) Calculez la flèche (en mm), la déformation axiale maximum et la contrainte de flexion maximum (en MPa) au milieu de l'élément 2

RÈPONSES N°20

Dans notre cas les axes locaux et globaux coïncident.

Chaque élément, compte tenu du chargement, n'est soumis qu'à un cisaillement de flexion.

Chaque nœud admet un déplacement v suivant Y, et une rotation θ suivant Z.

La matrice de rigidité élémentaire en flexion dans le plan XY :

$$\begin{bmatrix} k^{e} \end{bmatrix} = \frac{EI_{z}}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix}$$

Elle relie les efforts d'extrémité de l'élément et les déplacements des nœuds

$$\begin{bmatrix} F_{y1}^{e} \\ M_{z1}^{e} \\ F_{y2}^{e} \\ M_{z2}^{e} \end{bmatrix} = \frac{EI_{z}}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} \begin{bmatrix} v_{1} \\ \theta_{z1} \\ v_{2} \\ \theta_{z2} \end{bmatrix}$$

Calculons les matrices de rigidité élémentaires.

$$\frac{\text{Elément 1 :}}{\left[k^{1}\right] = \frac{EI_{z}}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix}} \xrightarrow{F^{1}y_{1}} \xrightarrow{L=1m} \xrightarrow{F^{1}y_{2}} \xrightarrow{F^{1}y$$

$$\begin{bmatrix} k^{1} \end{bmatrix} = \frac{200.10^{9} \times 37, 5.10^{-3} \times (80.10^{-3})^{3}}{12} \begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix}; \begin{bmatrix} k^{1} \end{bmatrix} = 3, 2.10^{5} \begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix}$$

$$\begin{bmatrix} F_{y1}^{1} \\ M_{z1}^{1} \\ F_{y2}^{1} \\ M_{z2}^{1} \end{bmatrix} = 3,2.10^{5} \begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix} \begin{bmatrix} v_{1} \\ \theta_{z1} \\ v_{2} \\ \theta_{z2} \end{bmatrix}$$

<u>Elément 2 :</u>

Détermination de la matrice de rigidité K de la structure :

Procédons à l'assemblage des 2 matrices de rigidité élémentaires :

$$\begin{bmatrix} k^{1} \end{bmatrix} = 3,2.10^{5} \begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix} \qquad \begin{bmatrix} k^{2} \end{bmatrix} = 3,2.10^{5} \begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix}$$

$$[K] = 3.210^{5} \begin{bmatrix} 12 & 6 & -12 & 6 & 0 & 0 \\ 6 & 4 & -6 & 2 & 0 & 0 \\ -12 & -6 & 24 & 0 & -12 & 6 \\ 6 & 2 & 0 & 8 & -6 & 2 \\ 0 & 0 & -12 & -6 & 12 & -6 \\ 0 & 0 & 6 & 2 & -6 & 4 \end{bmatrix}$$

Δ

D'ou: [P] = [K][D]	F_{Y1}]	12	6	-12	6	0	0	v_1
	M_{Z1}		6	4	-6	2	0	0	θ_{Z1}
	F_{Y2}	2.210^{5}	-12	-6	24	0	-12	6	<i>v</i> ₂
	M_{Z2}	= 5.210	6	2	0	8	-6	2	θ_{z_2}
	F_{Y3}		0	0	-12	-6	12	-6	<i>v</i> ₃
	M_{Z3}		0	0	6	2	-6	4	$\left[\theta_{Z3}\right]$

2°)

Appliquons les conditions limites :

F_{Y1}		12	6	-12	6	0	0		(1)
M_{Z1}		6	4	-6	2	0	0	0	(2)
- <i>P</i>	-3.210^{5}	-12	-6	24	0	-12	6	<i>v</i> ₂	(3)
0	= 3.210	6	2	0	8	-6	2	θ_{z_2}	(4)
F_{Y3}		0	0	-12	-6	12	-6	0	(5)
0		0	0	6	2	-6	4	θ_{z3}	(6)

La résolution des équations (3), (4),et (6) permet de trouver les déplacements :

$$v_2 = -2.7344mm$$
 $\theta_{z2} = -1.1719 \ 10^{-3}$ $\theta_{z3} = +4.6875 \ 10^{-3} rd$

$$\begin{bmatrix} F_{Y1} \\ M_{Z1} \\ -12000 \\ 0 \\ F_{Y3} \\ 0 \end{bmatrix} = 3.210^5 \begin{bmatrix} 12 & 6 & -12 & 6 & 0 & 0 \\ 6 & 4 & -6 & 2 & 0 & 0 \\ -12 & -6 & 24 & 0 & -12 & 6 \\ 6 & 2 & 0 & 8 & -6 & 2 \\ 0 & 0 & -12 & -6 & 12 & -6 \\ 0 & 0 & 6 & 2 & -6 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -2,7344.10^{-3} & -1,1719.10^{-3} & 0 \\ 0 & 0 & 6 & 2 & -6 & 4 \end{bmatrix}$$

La résolution des équations (1), (2), et (5) permet de trouver :

3°) Flèche :

La matrice d'interpolation des déplacements vaut :

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} & x - \frac{2x^2}{L} + \frac{x^3}{L^2} & \frac{3x^2}{L^2} - \frac{2x^3}{L^3} & -\frac{x^2}{L} + \frac{x^3}{L^2} \end{bmatrix} \qquad v(x) = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} D^e \end{bmatrix}$$
$$v(x) = \begin{bmatrix} 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} & x - \frac{2x^2}{L} + \frac{x^3}{L^2} & \frac{3x^2}{L^2} - \frac{2x^3}{L^3} & -\frac{x^2}{L} + \frac{x^3}{L^2} \end{bmatrix} \begin{bmatrix} v_2 \\ \theta_{z2} \\ v_3 \\ \theta_{z3} \end{bmatrix}$$

Pour
$$x = \frac{L}{2}$$
 et $L = 1m$ $[A] = \begin{bmatrix} \frac{1}{2} & \frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{bmatrix}$

$$v(\frac{1}{2}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{8} & \frac{1}{2} & -\frac{1}{8} \end{bmatrix} \begin{bmatrix} -2.7344 \\ -1.1719 \\ 0 \\ +4.6875 \end{bmatrix} 10^{-3} = 2,1.10^{-3}m = 2.1mm$$

Déformation:

La matrice d'interpolation des déformations vaut :

$$[B] = \begin{bmatrix} -\frac{6}{L^2} + \frac{12x}{L^3} & -\frac{4}{L} + \frac{6x}{L^2} & \frac{6}{L^2} - \frac{12x}{L^3} & -\frac{2}{L} + \frac{6x}{L^2} \end{bmatrix}$$

D'où :

$$\varepsilon_{xx} = -y \left[-\frac{6}{L^2} + \frac{12x}{L^3} - \frac{4}{L} + \frac{6x}{L^2} - \frac{6}{L^2} - \frac{12x}{L^3} - \frac{2}{L} + \frac{6x}{L^2} \right] \begin{bmatrix} v_2 \\ \theta_{z2} \\ v_3 \\ \theta_{z3} \end{bmatrix}$$

Pour :

$$x = \frac{L}{2} \qquad L = 1m \qquad y = \pm 40mm$$

$$\varepsilon_{xx} = \pm 0.04 \begin{bmatrix} 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2.7344 \\ -1.1719 \\ 0 \\ +4.6875 \end{bmatrix} 10^{-3} \qquad \varepsilon_{xx} = \pm 2,3466.10^{-4}$$

Contrainte :

 $\sigma_{xx} = E\varepsilon_{xx} = \pm 46.9 MPa$

3. MÉTHODE DES DÉPLACEMENTS OU DE LA RIGIDITÉ DE LA STRUCTURE :

FLEXIBILITÉ ET RIGIDITÉ D'UNE STRUCTURE :

La relation de flexibilité s'écrit :

La matrice symétrique [f] est la matrice de flexibilité de la structure.

 $\begin{bmatrix} P \end{bmatrix} = {}^{t} \begin{bmatrix} P_1 & P_2 & \dots & P_i \end{bmatrix}$ $\begin{bmatrix} D \end{bmatrix} = {}^{t} \begin{bmatrix} D_1 & D_2 & \dots & D_i \end{bmatrix}$

Les termes f_{ij} de la matrice de flexibilité se calculent par la méthode de la "charge unité".

On rappelle la signification physique d'un terme f_{ij} de la matrice de flexibilité [f] :

associé à P_i

provoqué par P_j=1

$$\begin{bmatrix} D_{1} \\ D_{2} \\ \cdots \\ D_{i} \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1i} \\ f_{21} & f_{22} & f_{2i} \\ \cdots & \cdots & \cdots \\ f_{i1} & f_{i2} & \cdots & f_{ii} \end{bmatrix} \begin{bmatrix} P_{1} = 1 \\ P_{2} = 0 \\ \cdots \\ P_{i} = 0 \end{bmatrix}$$

 L'énergie de déformation élastique (W_{déf}=W_{ext}) se calcule en fonction de la matrice de flexibilité par :

$$W_{déf} = \frac{1}{2} [P] [f] P]$$

En inversant la relation de flexibilité on obtient : $[\mathbf{P}] = [\mathbf{f}]^{-1}[\mathbf{D}]$

 $[f]^{-1} = [k]$ Posons:

La matrice symétrique [k] est la matrice de rigidité de la structure.

P] = [k][D]

Les termes $k_{ij} \mbox{ de la matrice de rigidité peuvent se calculer par la méthode du$ "déplacement unité".

L'énergie de déformation vaut alors, en fonction de la matrice de rigidité [K] en remplaçant [P] par [K][D] dans $W_{def} = \frac{1}{2} [P][f][P]$:

$$W_{déf} = \frac{1}{2} \left[D \left[k \right] f \left[k \right] D \right]$$

Soit, puisque
$$[k][f] = [I]$$

W_{déf} =
$$\frac{1}{2}^{+} [D] [k] [D]$$

4. MÉTHODE DES ÉLÉMENTS FINIS :

4.1. Principe de la Méthode :

Pour une structure de géométrie complexe les méthodes de résolution exposées précédemment : méthode de MAXWELL-MOHR (méthode de la charge ou du déplacement unité), méthode de CASTIGLIANO sont difficiles voire impossibles à appliquer. Ces méthodes manuelles de calcul ont été établies au milieu du XIX^e siècle.

Au milieu du XX^e siècle l'apparition des premiers ordinateurs a permis le développement d'une nouvelle méthode numérique de calcul sous l'impulsion de COURANT, ARGYRIS, TURNER et de bien d'autres : la "Méthode des Eléments Finis "(MEF).

La méthode des éléments finis est une **méthode numérique inverse** « type déplacements» (donc apparenté à la méthode de rigidité) de résolution des problèmes d'élasticité. Dans une méthode du « type déplacement » on contourne la difficulté, voir l'impossibilité de la résolution directe d'un problème d'élasticité de la façon suivante :

1°) On se fixe la forme des 3 déplacements u,v,w d'un point P appartenant à un milieu continu en fonction de ses coordonnées x, y et z.

2°) On calcule les inconnues restantes :

[ε] par dérivation de [u].

 $[\sigma]$ par les lois de LAMÉ à partir de $[\epsilon]$.

3°) On vérifie, à posteriori, les équations restantes : les équations d'équilibre local.

4°) On vérifie enfin, à posteriori, les conditions aux limites en contraintes et déplacements.

La résolution d'un problème d'élasticité de cette façon est donc toujours possible mais généralement les équations d'équilibre local ne sont pas satisfaites de partout et les conditions aux limites non plus. La solution du problème n'est donc qu'approchée (avec une bonne approximation quand même !). Cette méthode numérique s'effectue en quatre étapes principales :

▶ 1^{ère} étape :

Le maillage de la structure (découpage en éléments).

► 2^{ème} étape :

Le calcul de la matrice de rigidité [k^e] d'un l'élément libre "e".

► 3^{ème} étape :

Le calcul de la matrice de rigidité [K] globale de la structure par assemblage des matrices de rigidité élémentaires.

► 4^{ème} étape :

La résolution du problème qui consiste principalement à inverser la matrice de rigidité réduite [Kr] de la structure.

Considérons la structure plane de la figure ci-dessous.

1^{ère} étape :

Maillage de la structure :

Le milieu continu "S" est découpé en un certain nombre de morceaux "e" de forme géométrique simple (des triangles par exemple si la structure est plane) de telle manière que la réunion de tous les morceaux recouvre le plus exactement possible la structure. Cette opération s'appelle le <u>maillage de la structure</u>. Chaque morceau "e" est un <u>élément</u>. L'élément est considéré comme un milieu continu. Les dimensions des éléments sont finies et non infinitésimales au sens du calcul différentiel. D'où le nom de la méthode : Méthode des "Éléments Finis" (MEF).

Les éléments sont connectés entre eux par des <u>noeuds</u> (les sommets des triangles par exemple). Les nœuds qui sont des **points matériels** possèdent 6 degrés de liberté dans l'espace (les trois translations et les trois rotations) :

[†][D] =
$$\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \theta_{\mathsf{X}} & \theta_{\mathsf{y}} & \theta_{\mathsf{Z}} \end{bmatrix}$$

Attention, un point P₀ pris dans l'élément (qui est considéré comme un milieu continu) possède trois déplacements :

$$^{\dagger}[\mathbf{u}] = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$$

Les déplacements de tous les nœuds de la structure sont les inconnues du problème.

La forme de l'élément est fonction de la dimension du milieu continu à mailler.

<u>Exemples de maillage :</u>

Le déplacement $\vec{u}(P_0)$ d'un point de l'élément et les variables en ce point P_0 de l'élément sont fonctions du type de problème (la dimension du milieu continu).

Dimension		Nombre de composantes	variab	25	
du milieu	Milieu	pour ū(P _o)	locales	globales	
1	Poutres	u,v,w	Xe	х	
2	Membranes	u,v	Xe,Ye	Х,У	
	Plaques	w			
3	Volumes	u,v,w	X _e ,Y _e ,Z _e	Х,У,Ζ	

x_ey_ez_e est le repère local de l'élément. XYZ est le repère global de la structure.

2^{ème} étape :

Calcul de la matrice de rigidité d'un l'élément libre "e":

On calcule alors de la matrice de rigidité $[k^e]$ d'un élément libre "e" (un élément libre est un élément isolé de son contexte et qui n'appartient pas par conséquent à une structure en équilibre). Cette matrice de rigidité élémentaire est généralement calculée dans le repère local $x_e y_e z_e$ de l'élément. On montrera par la suite que $[k^e]$ se calcule par une intégrale sur le volume de l'élément :

$$\left[\mathbf{k}^{e}\right] = \int_{V_{e}}^{+} \left[\mathbf{B}\right] \left[\mathbf{C}\right] \left[\mathbf{B}\right] d\mathbf{V}$$

[C] est la matrice des constantes élastiques du matériau et [B] la matrice d'interpolation des déformations dans l'élément

3^{ème} étape :

Calcul de la matrice de rigidité de la structure :

Les différentes matrices de rigidité élémentaire sont alors assemblées afin d'obtenir la matrice de rigidité [K] de la structure. Cette opération s'appelle <u>l'assemblage</u>. Elle s'effectue en écrivant que l'énergie de déformation élastique de la structure discrétisée vaut :

$$W_{d\acute{e}f} = \sum_{\acute{e}l\acute{e}ments} W^{e}_{d\acute{e}f}$$

Relation dans laquelle $W^e_{déf}$ est l'énergie de déformation élastique pour un élément, qui se calcule par :

$$W_{d\acute{e}f}^{e} = \frac{1}{2} \left[D^{e} \left[k^{e} \right] D^{e} \right]$$

[D^e] est un vecteur contenant les déplacements des nœuds de l'élément.

$$\frac{1}{2}^{\dagger} \left[D \llbracket K \rrbracket D \right] = \sum_{\text{éléments}} \frac{1}{2}^{\dagger} \left[D^{e} \llbracket k^{e} \llbracket D^{e} \right]$$

L'identification membre à membre de cette expression permet la "construction" (on dit l'assemblage) de la matrice de rigidité globale [K] de la structure. On obtient finalement un système matriciel de la forme :

$$[\mathsf{P}] = [\mathsf{K}]\![\mathsf{D}]$$

La matrice symétrique [K] est la matrice de rigidité de la structure.

Elle relie les forces nodales [P] appliquées sur les nœuds de la structure (y compris les réactions isostatiques et hyperstatiques) et **les déplacements nodaux [D] qui sont les inconnues du problème**. Notez qu'un certain nombre de déplacements nodaux sont nuls (aux appuis) et qu'ils ne font pas partie par conséquent des inconnues du problème.

Cette transformation du **milieu continu** en un **milieu discret** de points matériels (les nœuds) remplace l'étude d'un milieu continu, comportant un nombre infini d'inconnues, en l'étude d'un milieu discret ne comportant plus qu'un nombre fini d'inconnues. En effet, le milieu discret possédant un nombre fini de nœuds, il y a donc un nombre finis d'inconnues : les déplacements (u, v, w, θ_X , θ_y , θ_z) de tous les nœuds. Leur nombre donne l'ordre de la matrice de rigidité [K] de la structure.

4^{ème} étape : Résolution du problème.

La résolution consiste à inverser **la matrice de rigidité réduite [K _r]**. La matrice de rigidité réduite est obtenue à partir de la matrice de rigidité [K] de la structure en enlevant les lignes et les colonnes qui correspondes aux appuis. Après inversion, le système numérique se présente alors sous la forme :

Cette relation donne les déplacement nodaux non nuls [D], que l'on réinjecte dans le système général [P]=[K][D] pour calculer toutes les réactions (isostatiques et hyperstatiques). On déduit ensuite les déplacements, les déformations et les contraintes dans l'élément.

4.2. Interpolation polynomiale :

Pour calculer, par la suite, la matrice de rigidité d'un élément libre, il faut au préalable chercher l'expression du déplacement $\vec{u}(P_0)$ d'un point P_0 de l'élément en fonction des déplacements des noeuds de l'élément. Ce problème, d'une importance capitale, consiste à "interpoler" le déplacement $\vec{u}(P_0)$ d'un point P_0 de l'élément en fonction des déplacements des nœuds de l'élément. La fonction d'interpolation, sous forme d'un polynôme, peut être choisie en concordance avec la théorie (pour les poutres par exemple) ou de façon "plus ou moins approchée" pour les autres structures. Le nombre de variables et le degré du polynôme d'interpolation sont conditionnés par :

- La dimension du milieu pour le nombre de variables.

- Le nombre de nœuds de l'élément et le nombre de degré de liberté par nœud.

4.2.1. Le nombre de variables du polynôme d'interpolation dépend de la dimension du milieu :

1°) Milieu de dimension 1 (poutres) : Le polynôme est fonction d'une variable x :

	Nbre de termes*	d° du polynôme	Interpolation
1	1	0	
x	2	1	linéaire
x ²	3	2	quadratique
x ³	4	3	cubique
x ⁴	5	4	quartique
	etc		

Exemple : interpolation linéaire

L'interpolation linéaire consiste à approximer une courbe donnée entre deux points par une droite passant par ces deux points.

L'équation de la droite est de la forme :

$$U = \alpha_1 + \alpha_2 x \qquad \qquad u = u_1 + \frac{u_2 - u_1}{L} x$$

L'équation précédente peut aussi s'écrire sous la forme typique utilisée en éléments finis :

$$u = (1 - \frac{x}{L})u_1 + \frac{x}{L}u_2 = N_1(x)u_1 + N_2(x)u_2 \qquad \qquad N_1(x) = (1 - \frac{x}{L}) \text{ et } N_2(x) = \frac{x}{L}$$

Le déplacement u s'écrit sous forme matricielle :

$$u = \begin{bmatrix} N_1(x) & N_2(x) \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \qquad u = \begin{bmatrix} A \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Les fonctions $N_1(x)$ et $N_2(x)$ sont appelées fonctions d'interpolation. La matrice $[A] = \begin{bmatrix} N_1(x) & N_2(x) \end{bmatrix}$ est la matrice d'interpolation des déplacements.

4.2.2. Le degré du polynôme d'interpolation dépend du nombre de nœuds de l'élément et le nombre de degré de liberté par nœud :

Élément poutre droite à 2 nœuds :

Les sollicitations traction, torsion et flexion dans les plans principaux d'inertie xy et xz peuvent se traiter séparément.

- Traction/compression :

2 déplacements nodaux connus u_1 et $u_2 \Rightarrow 2$ constantes α_i à déterminer pour u(x).

x

L

$$\mathbf{u}(\mathbf{x}) = \alpha_1 + \alpha_2 \mathbf{x}$$

L'interpolation est linéaire comme dans la théorie des poutres.

- Torsion :

2 déplacements nodaux connus θ_{x1} et $\theta_{x2} \Rightarrow 2$ constantes α_i à déterminer pour interpoler θ_x .

$$\theta_{x}(\mathbf{X}) = \alpha_{1} + \alpha_{2}\mathbf{X}$$

L'interpolation est linéaire comme dans la théorie des poutres.

- Flexion plane dans le plan xy :

4 déplacements nodaux connus v₁, θ_{z1} , v₂, $\theta_{z2} \Rightarrow$ 4 constantes α_i à déterminer pour interpoler v(x).

$$\mathbf{v}(\mathbf{x}) = \alpha_1 + \alpha_2 \mathbf{x} + \alpha_3 \mathbf{x}^2 + \alpha_4 \mathbf{x}^3$$

L'interpolation est du 3^{ème} degré comme dans la théorie des poutres.

<u>– Flexion plane dans le plan xz :</u>

4 déplacements nodaux connus w₁, θ_{y1} , w₂, $\theta_{y2} \Rightarrow 4$ constantes à déterminer pour interpoler w(x).

$$\mathbf{w}(\mathbf{x}) = \alpha_1 + \alpha_2 \mathbf{x} + \alpha_3 \mathbf{x}^2 + \alpha_4 \mathbf{x}^3$$

L'interpolation est du 3^{ème} degré comme dans la théorie des poutres.

4.3. Éléments usuels :

Dimension du Milieu	Milieu	Éléments	ddl/nœud	d° du polynôme d'interpolation des déplacements
1	Poutres	poutre droite à 2 nœuds	6 u,v,w θ _x ,θ _y ,θ _z	3
		y J Triangle à 3 nœuds		1
	Membranes	y Quadrilatère à 4 nœuds	2 u,v	2
2	(Chargement dans ×,y)	y Triangle à 6 nœuds		2
	Plaques	Triangle à 3 nœuds	3	3
			w,θ _x ,θ _y	
	(Chargement suivant z)	Z Y Quadrilatère à 4 nœuds		4

Dimension du Milieu	Milieu	Éléments	ddl/nœud	d° du polynôme d'interpolation des déplacements
3	Volumes	x hexaèdre à 8 nœuds	3 u,v,w	3

4.4. Calcul de la matrice de rigidité [k^e] d'un élément libre :

On rappelle qu'un élément "libre" est un élément isolé de son contexte (qui n'appartient pas à une structure en équilibre).

4.4.1. Matrice d'interpolation des déplacements [A] :

Considérons un élément de membrane triangulaire à 3 nœuds.

Il y a 2 déplacements u et v à interpoler et 6 déplacements nodaux connus. Les polynômes d'interpolation ne peuvent comporter que 3 constantes α_i . Ils seront donc de la forme :

 $u(X,Y) = \alpha_1 + \alpha_2 X + \alpha_3 Y$ $v(X,Y) = \alpha_4 + \alpha_5 X + \alpha_6 Y$ L'interpolation est linéaire. Les relations précédentes

$$\begin{array}{l} \text{s'écrivent sous forme matricielle} : \begin{bmatrix} u(X,Y) \\ v(X,Y) \end{bmatrix} = \begin{bmatrix} 1 & X & Y & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & X & Y \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix} \\ \\ \begin{array}{l} \mu_1 = \alpha_1 + \alpha_2 X_1 + \alpha_3 Y_1 \\ \nu_1 = \alpha_4 + \alpha_5 X_1 + \alpha_6 Y_1 \\ u_2 = \alpha_1 + \alpha_2 X_2 + \alpha_3 Y_2 \\ \nu_2 = \alpha_4 + \alpha_5 X_2 + \alpha_6 Y_2 \\ u_3 = \alpha_1 + \alpha_2 X_3 + \alpha_3 Y_3 \\ \nu_3 = \alpha_4 + \alpha_5 X_3 + \alpha_6 Y_3 \end{bmatrix}$$

Les relations précédentes s'écrivent sous forme matricielle :

$\begin{bmatrix} u_1 \end{bmatrix}$]	1	X_1	Y_1	0	0	0	$\left[\alpha_{1}\right]$
v_1		0	0	0	1	X_1	Y_1	α_2
<i>u</i> ₂		1	X_{2}	Y_2	0	0	0	α_{3}
<i>v</i> ₂	-	0	0	0	1	X_{2}	Y_2	α_4
<i>u</i> ₃		1	X_3	Y_3	0	0	0	α_{5}
<i>v</i> ₃		0	0	0	1	X_{3}	Y_3	α_{6}

L'inversion de cette relation permet donc d'obtenir l'expression matricielle des déplacements u et v d'un point P_0 de l'élément en fonction du déplacement des 3 noeuds :

$$\begin{bmatrix} u(X,Y) \\ v(X,Y) \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{bmatrix}$$

 N_1 , N_2 , N_3 sont les fonctions d'interpolation.

[A] est la matrice d'interpolation des déplacements d'un point P₀ situé à l'intérieur de l'élément triangulaire de membrane à 3 nœuds, à partir des déplacements [D^e] des nœuds de l'élément.

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{N}_1 & \mathbf{0} & \mathbf{N}_2 & \mathbf{0} & \mathbf{N}_3 & \mathbf{0} \\ \mathbf{0} & \mathbf{N}_1 & \mathbf{0} & \mathbf{N}_2 & \mathbf{0} & \mathbf{N}_3 \end{bmatrix}$$

On montre que:
$$N_1 = \frac{1}{2A}((X_2Y_3 - X_3Y_2) + (Y_2 - Y_3)X + (X_3 - X_2)Y)$$

A est l'aire du triangle. N_2 et N_3 s'obtiennent par permutation circulaire.

$$A = \frac{1}{2}(X_1y_{23} + X_2y_{31} + X_3y_{12}) \quad \text{avec}: \quad y_{ij} = Y_i - Y_j$$

4.4.2. Matrice d'interpolation des déformations [B] :

Par dérivation de [u] on obtient la matrice des déformations dans l'élément.

$$[\boldsymbol{\mathcal{E}}] = [\boldsymbol{\mathcal{D}}] [\boldsymbol{u}]$$

[D] est la matrice des opérateurs différentiels.

En reportant $[\mathbf{u}] = [A][D^e]$ dans $[\varepsilon] = [\mathcal{D}][\mathbf{u}]$ on obtient : $[\varepsilon] = [\mathcal{D}][A][D^e]$ Posons :

$$\begin{bmatrix} \textbf{B} \end{bmatrix} = \begin{bmatrix} \mathcal{D} \end{bmatrix} \begin{bmatrix} \textbf{A} \end{bmatrix}$$

[B] est la matrice d'interpolation des déformations d'un point P₀ dans l'élément.

Les déformations en un point P_0 à l'intérieur de l'élément sont donc interpolées à partir des déplacements [D^e] des nœuds de l'élément.

$$[\mathbf{\varepsilon}] = [\mathbf{B}] \mathbf{D}^{\mathbf{\varepsilon}}]$$

4.4.3. Matrice des contraintes $[\sigma]$:

La loi de LAMÉ permet de calculer [σ] à partir de [ϵ] :

 $[\sigma] = [C] [\varepsilon]$

[C] est la matrice des constantes élastiques du matériau. Compte tenu de $[\epsilon] = [\mathbf{B}] [D^e]$, $[\sigma]$ s'écrit :

Les contraintes en un point P_0 à l'intérieur de l'élément sont interpolées à partir des déplacements $[D^e]$ des nœuds de l'élément.

4.4.4. Matrice de rigidité [k^e] d'un élément libre :

Dans le cas d'un solide quelconque de volume V_0 , le travail de déformation se calcule par :

$$W_{déf} = \int_{V_0} \frac{1}{2} (\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + \sigma_{zz} \varepsilon_{zz} + \sigma_{xy} \gamma_{xy} + \sigma_{yz} \gamma_{yz} + \sigma_{zx} \gamma_{zx}) dV$$

Soit sous forme matricielle :

$$W_{déf} = \int_{V_0} \frac{1}{2} \left[\sigma \right] \varepsilon dV$$

Compte tenu que $[\sigma] = [C][B][D^e]$ et que $[\varepsilon] = [B][D^e]$, le travail de déformation dans l'élément se calcule par (V_e est le volume de l'élément) :

Les déplacements nodaux [D^e] étant constants W_{déf} s'écrit :

$$W_{d\acute{e}f}^{e} = \int_{V_{e}} \frac{1}{2} \left[D^{e} \right] \left[B \right] \left[C \right] \left[B \right] \left[D^{e} \right] dV \qquad \text{or} \qquad W_{d\acute{e}f}^{e} = \frac{1}{2} \left[D^{e} \right] \left[k^{e} \right] \left[D^{e} \right] dV$$

On obtient en identifiant les deux expressions de $W_{\text{déf}}$ l'expression de la matrice de rigidité élémentaire :

$$\left[k^{e}\right] = \int_{V_{e}} {}^{\dagger}\left[B\right] \left[C\right] \left[B\right] dV$$

Cette relation permet de calculer la matrice de rigidité [k^e] d'un élément libre à partir de la matrice [B] d'interpolation des déformations dans l'élément et de la matrice des constantes élastiques [C] du matériau.

- La matrice de rigidité élémentaire [k^e] est symétrique ([C] est symétrique)

$${}^{t}\left[k^{e}\right] = \left[\int_{V_{e}}{}^{t}\left[B\right]\left[C\right]\left[B\right]dV\right] = \int_{V_{e}}{}^{t}\left[B\right]\left[C\right]\left[B\right]dV = \left[k^{e}\right]$$

- La matrice de rigidité élémentaire [k^e] d'un élément libre est singulière (son inverse [k^e]⁻¹ n'existe pas), car l'élément libre n'appartient pas à une structure en équilibre (mouvement de corps rigide possible).
4.4.5. Matrices de rigidité d'un élément poutre droite à deux nœuds

La formulation est faite dans les axes locaux. Les sollicitations traction, torsion flexion dans les plans xy et yz peuvent se traiter séparément.

Traction-Compression :

Rappels théoriques :

La théorie des poutres en traction uniaxiale montre que :

1°) Le déplacement axial u(x) des sections droites est proportionnel à l'abscisse x de la section.

2°) La déformation axiale vaut $\varepsilon_{xx} = \frac{du}{dx}$ 3°) La loi de LAMÉ [σ] = [C][ε] se réduit à $\sigma_{xx} = E\varepsilon_{xx}$, donc [C]=E.

- Calcul de [A], matrice d'interpolation des déplacements :

La fonction d'interpolation du déplacement u(x) est linéaire.

$$u(x) = \alpha_{1} + \alpha_{2}x \qquad u(x) = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix}$$
$$u(0) = u_{1} = \alpha_{1} \qquad u(L) = u_{2} = \alpha_{1} + \alpha_{2}L$$
$$\begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & L \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} \quad L' \text{ inversion de cette relation donne} : \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$
$$u(x) = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} \quad s' \text{ \'ecrit} : \qquad u(x) = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

$$u(x) = [A][D^{e}] \quad \text{avec}: \qquad \begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$
$$[A] = \begin{bmatrix} N_{1}(x) \mid N_{2}(x) \end{bmatrix} \qquad u(x) = \begin{bmatrix} N_{1}(x) \mid N_{2}(x) \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

 $N_1(x)$ et $N_2(x)$ sont les fonctions d'interpolation. La matrice $[A] = [N_1(x) \quad N_2(x)]$ est la matrice d'interpolation des déplacements.

- Calcul de [B] :

La matrice des opérateurs différentiels se réduit à :

$$[\mathcal{D}] = \frac{d}{dx} \qquad [B] = [\mathcal{D}][A] = \frac{d}{dx} \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$

 $\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix}$

[B] est la matrice d'interpolation des déformations.

- Calcul de [C]. [C] = E

- Calcul de [k^e] :

$$\begin{bmatrix} k^{e} \end{bmatrix} = \int_{V_{e}} \begin{bmatrix} B \end{bmatrix}^{t} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} B \end{bmatrix} dV$$

$$\begin{bmatrix} k^{e} \end{bmatrix} = \int_{V_{e}} E \begin{bmatrix} -\frac{1}{L} \\ \frac{1}{L} \end{bmatrix} \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} dV = E \begin{bmatrix} \frac{1}{L^{2}} & -\frac{1}{L^{2}} \\ -\frac{1}{L^{2}} & \frac{1}{L^{2}} \end{bmatrix} \int_{V_{e}} dV \text{ or } \int_{V_{e}} dV = AL \text{ est le}$$
volume de l'élément.
$$\begin{bmatrix} k^{e} \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

La matrice carrée symétrique [k^e] est la matrice de rigidité d'un élément libre en traction-compression (ou matrice de rigidité élémentaire en traction-compression). Notez que la matrice de rigidité élémentaire [k^e] est singulière (son déterminant est nul si additionne les 2 lignes ou les 2 colonnes). Elle relie les efforts d'extrémité de l'élément et les déplacements des noeuds

$$\begin{bmatrix} F_{x1}^{e} \\ F_{x2}^{e} \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} \qquad \qquad \begin{bmatrix} P^{e} \end{bmatrix} = \begin{bmatrix} k^{e} \end{bmatrix} \begin{bmatrix} D^{e} \end{bmatrix}$$

Torsion des barres à sections droites circulaires :

Rappels théoriques :

La théorie des cylindres en torsion montre que :

1°) La rotation $\theta_x\,$ des sections droites est proportionnelle à l'abscisse x. de la section.

Par conséquent, les déplacements v et w d'un point P₀ d'une section droite située à l'abscisse x valent :

	θ_x	0
$\vec{u} = \vec{\theta}_x \wedge \overrightarrow{GP_0} =$	0 ^	y
	0	Z.
$\int u = 0$]	
$[\mathbf{u}] = \mathbf{v} = -z\theta_x$		
$w = y\theta_x$		

2°) La distorsion des génératrices (la déformation de torsion) vaut : $x = e^{\frac{\theta_x^{\max i}}{\theta_x}} = e^{\frac{\theta_x^{\max i}}{\theta_x}}$

$$\gamma = \rho \frac{\sigma_x}{L} = \rho \theta_x$$

3°) La loi de LAMÉ $[\sigma] = [C][\varepsilon]$ de réduit à $\tau = G\gamma$, donc [C]=G.

On constate donc que les déplacements v, w d'un point P_0 de l'élément, la déformation γ et la contrainte de torsion τ ne dépendent que de la rotation θ_x de la section droite. Nous allons donc prendre ce paramètre pour traiter la torsion.

- Calcul de [A]

La fonction d'interpolation la rotation $\theta(x)$ est linéaire. $\theta(x) = \alpha_1 + \alpha_2 x$

Un raisonnement identique à celui de la traction-compression conduit à :

$$\theta(x) = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} D^e \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} N_1(x) \mid N_1(x) \end{bmatrix} \qquad u(x) = \begin{bmatrix} N_1(x) \mid N_1(x) \end{bmatrix} \begin{bmatrix} \theta_{x1} \\ \theta_{x2} \end{bmatrix}$$

 $N_1(x)$ et $N_2(x)$ sont les fonctions d'interpolation. La matrice $[A] = [N_1(x) \ N_2(x)]$ est la matrice d'interpolation des déplacements.

- Calcul de [B]

$$\gamma = \rho \theta_x = \rho \frac{d}{dx} \theta_x \qquad [\mathfrak{D}] = \rho \frac{d}{dx} \qquad [B] = \rho \frac{d}{dx} [A] = \rho \left[-\frac{1}{L} + \frac{1}{L} \right]$$

$$[B] = \rho \left[-\frac{1}{L} - \frac{1}{L} \right]$$

$$= \rho \left[-\frac{1}{L} + \frac{1}{L} \right] \left[-\frac{1}{L} + \frac{1}{L} \right] dV = G \left[\frac{1}{L^2} - \frac{1}{L^2} + \frac{1}{L^2} \right] \int_{V_e} \rho^2 dV = G \left[\frac{1}{L^2} + \frac{1}{L^2} + \frac{1}{L^2} \right] \int_{S} \rho^2 dA \int_{0}^{L} dx$$

$$[k^e] = \frac{GI_G}{L} \left[-\frac{1}{L} + \frac{1}{L} \right] \left[-\frac{1}{L} + \frac{1}{L} \right] dV = G \left[\frac{1}{L^2} + \frac{1}{L^2} + \frac{1}{L^2} \right] \int_{S} \rho^2 dA \int_{0}^{L} dx$$

$$[k^e] = \frac{GI_G}{L} \left[-\frac{1}{L} + \frac{1}{L} \right] \left[-\frac{1}{L} + \frac{1}{L} \right] \left[-\frac{1}{L} + \frac{1}{L^2} + \frac{1}{L^2} + \frac{1}{L^2} \right] \int_{S} \rho^2 dA \int_{0}^{L} dx$$

$$[k^e] = \frac{GI_G}{L} \left[-\frac{1}{L} + \frac{1}{L} \right] \left[-\frac{1}{L} + \frac{1}{L^2} + \frac{1}{L^2$$

La matrice carrée symétrique [k^e] est la matrice de rigidité d'un élément libre en torsion.

Flexion dans le plan xy :

Rappels théoriques :

La théorie des poutres en flexion montre que :

1°) La flèche v est une fonction du troisième degré en x.

2°) En flexion (comme en traction) la déformation axiale ε_{xx} vaut $\varepsilon_{xx} = \frac{du}{dx}$. Les sections droites restent perpendiculaires à la ligne moyenne déformée (les sections droites sont indéformables). Donc :

$$u = -y\theta_z$$

$$\theta_z = \frac{dv}{dx}$$
 Par conséquent :

$$u = -y\frac{dv}{dx}$$

$$\varepsilon_{xx} = \frac{du}{dx} = -y\frac{d^2v}{dx^2}$$

3°) La loi de LAMÉ $[\sigma] = [C][\varepsilon]$ de
réduit à $\sigma_{xx} = E\varepsilon_{xx}$ donc $[C]=E$.

Calcul de [A], matrice d'interpolation des déplacements :
 La fonction d'interpolation du déplacement v(x) une fonction du troisième degré.

 $v(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3 \qquad v(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} \qquad v(0) = v_1 = \alpha_1$ $v(L) = v_2 = \alpha_1 + \alpha_2 L + \alpha_3 L^2 + \alpha_4 L^3$

Compte tenu de $\theta_z = \frac{dv}{dx}$ $\theta_z = \alpha_2 + 2\alpha_3 x + 3\alpha_4 x^2$ $\theta_z(0) = \theta_{z1} = \alpha_2$ $\theta_z(L) = \theta_{z2} = \alpha_2 + 2\alpha_3 L + 3\alpha_4 L^2$

Les 4 relations s'écrivent sous forme matricielle :
$$\begin{bmatrix} v_1 \\ \theta_{z1} \\ \theta_{z2} \\ \theta_{z2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L & L^2 & L^3 \\ 0 & 1 & 2L & 3L^2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

L'inversion de cette relation donne :
$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 &$$

$$[A] = \begin{bmatrix} N_1(\mathbf{x}) \mid & N_2(\mathbf{x}) \mid & N_3(\mathbf{x}) \mid & N_4(\mathbf{x}) \end{bmatrix}$$

 $N_1(x)$, $N_2(x)$ $N_3(x)$ et $N_4(x)$ sont les fonctions d'interpolation.

$$v(x) = \begin{bmatrix} N_1(x) & N_2(x) & N_3(x) & N_4(x) \end{bmatrix} \begin{bmatrix} v_1 \\ \theta_{z1} \\ v_2 \\ \theta_{z2} \end{bmatrix}$$

- Calcul de [B] :

$$\varepsilon_{xx} = -y \frac{d^2 v}{dx^2} \qquad [\mathcal{D}] = -y \frac{d^2}{dx^2} \qquad [B] = [\mathcal{D}][A]$$

Compte tenu que :

.

$$\begin{bmatrix} B \end{bmatrix} = -y \begin{bmatrix} -\frac{6}{L^2} + \frac{12x}{L^3} & | & -\frac{4}{L} + \frac{6x}{L^2} & | & \frac{6}{L^2} - \frac{12x}{L^3} & | & -\frac{2}{L} + \frac{6x}{L^2} \end{bmatrix}$$

- Calcul de [C] :
$$\begin{bmatrix} C \end{bmatrix} = E$$

- Calcul de [k^e] :
$$\begin{bmatrix} k^e \end{bmatrix} = \int_{V_e} \begin{bmatrix} B \end{bmatrix}^{*} \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} B \end{bmatrix} dV$$

IUTB-LYON1-GMP-DDS

$$\begin{bmatrix} k^{e} \end{bmatrix} = \int_{V_{e}} Ey^{2} \begin{bmatrix} -\frac{6}{L^{2}} + \frac{12x}{L^{3}} \\ -\frac{4}{L} + \frac{6x}{L^{2}} \\ -\frac{4}{L} + \frac{6x}{L^{2}} \\ -\frac{6}{L} - \frac{12x}{L^{3}} \\ -\frac{2}{L} + \frac{6x}{L^{2}} \end{bmatrix} \begin{bmatrix} -\frac{6}{L^{2}} + \frac{12x}{L^{3}} & | & -\frac{4}{L} + \frac{6x}{L^{2}} & | & \frac{6}{L^{2}} - \frac{12x}{L^{3}} & | & -\frac{2}{L} + \frac{6x}{L^{2}} \end{bmatrix} dV$$

$$k_{11}^{e} = E \int_{V_{e}} y^{2} \left(-\frac{6}{L^{2}} + \frac{12x}{L^{3}} \right)^{2} dV = E \int_{S} y^{2} dA \int_{0}^{L} \left(+\frac{36}{L^{4}} - \frac{144x}{L^{5}} + \frac{144x^{2}}{L^{6}} \right) dx$$

$$\int_{S} y^{2} dA = I_{Z}$$

$$k_{11}^{e} = EI_{Z} \left[\frac{36}{L^{4}} - \frac{72x^{2}}{L^{5}} + \frac{48x^{3}}{L^{6}} \right]_{0}^{L} = \frac{EI_{Z}}{L^{3}} \left[36 - 72 + 48 \right] \qquad \qquad k_{11}^{e} = \frac{12EI_{Z}}{L^{3}}$$

On procède de même pour les autres termes de $[k^e]$. Finalement la matrice de rigidité s'écrit :

$\left[k^{e}\right] = \frac{EI_{z}}{L^{3}}$	[12	6 <i>L</i>	-12	6L
	6 <i>L</i>	$4L^2$	-6L	$2L^2$
	-12	-6L	12	-6L
	$\int 6L$	$2L^2$	-6L	$4L^2$

$\left[P^{e}\right] = \left[k^{e}\right] D^{e}$

La matrice carrée symétrique $[k^e]$ est la matrice de rigidité d'un élément libre en flexion dans le plan xy. Elle est singulière ($C_1+C_3=0$). Elle relie les efforts d'extrémité de l'élément et les déplacements des noeuds

$$\begin{bmatrix} F_{y1}^{e} \\ M_{z1}^{e} \\ F_{y2}^{e} \\ M_{z2}^{e} \end{bmatrix} = \frac{EI_{z}}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} \begin{bmatrix} v_{y1} \\ \theta_{z1} \\ v_{y2} \\ \theta_{z2} \end{bmatrix}$$

		[EĄ]	<i>L</i> 0	0	0	0	0	−EĄI	L 0	0	(0 C	0 0	
			$12 E I_z/$	$L^3 = 0$	0	0	$6EI_z/L^2$	0	$-12EI_z/L$	L^3 0	(0 C	$6EI_z$	$ L^2 $
				$12EI_{y}$	$L^3 = 0$	$-6EI_y/L^2$	0	0	0	$-12EI_{y}$	L^3	0 –6 <i>El</i>	$J_y/L^2 = 0$	
					GJ∥L	0	0	0	0	0	-G	J/L = 0	0 0	
						$4EI_{y}/L$	0	0	0	$6EI_{y}/I$	L^{2} (2 EI	,/ <i>L</i> 0	
	$\left[k^{e}\right]_{=}$	_					$4EI_z/L$	0	$-6EI_z/I$	$L^{2} = 0$	(0 0	$2EI_z$	L
	[~]-							EĄ́L	0	0	(0 C	0 0	
									$12 E I_z/L$	$\frac{3}{4}$ 0	(0 0	–6 <i>El</i>	\int_{z}/L^{2}
										$12EI_{y}/L$	L^3 ($0 6EI_{y}$	L^2 0	
				SYM	1						G.	I/L 0	0 0	
												4 <i>EI</i> ,	/L = 0	
		L											$4EI_z$	L
F^{e} .	7 Г	EAL	0	0	0	0	0 –	EAL	0	0	0	0	0	Tu_1
F_{1}^{e}		1	$12EL/L^3$	0	0	0 6	EI/L^2	0 -	$-12EI_L^3$	0	0	0	$6EL/L^2$	
F_1^e			21	$12 E I_{\rm v}/L^3$	0 –	$6EI_{\rm u}/L^2$	0	0	0	$-12 E I_{y}/L^{3}$	0	$-6EI_{\rm w}/L^2$	0	$W_{\tau 1}$
M_{s1}^{e}				<i>y</i> [GJ∥L	0	0	0	0	0	-GJ/L	0	0	$\theta_{\rm rl}$
$M_{\nu_1}^{e}$						$4EI_{v}/L$	0	0	0	$6EI_{v}/L^{2}$	0	$2EI_{y}/L$	0	θ_{v1}
M_{z1}^{e}						4	EI_z/L	0 -	$-6EI_z/L^2$	0	0	0	$2EI_z/L$	θ_{z1}
F_{x2}^e							L	EĄL	0	0	0	0	0	u_{x2}
F_{y2}^e									$12EI_z/L^3$	0	0	0	$-6EI_z/L^2$	v_{y2}
$F_{z^2}^e$										$12 E I_y / L^3$	0	$6EI_{y}/L^{2}$	0	<i>W</i> ₂₂
$M^e_{x^2}$				SYM							GJ/L	0	0	θ_{x2}
лле												4EI/L	0	θ .
W _{y2}													U	<i>y</i> 2

Traction-Compression, torsion, flexion dans les plans xy et zx :

4.5. Rotation du repère dans le plan:

Les matrices de rigidité élémentaires sont définies dans les repères locaux de chaque élément (x_e,y_e pour l'élément "e").

Examinons ce que devient la matrice $[k^e]$ de l'élément "e" lorsqu'on change de repère et que l'on passe du repère global XY (l'ancien repère) au repère local x_e, y_e (le nouveau repère) par la rotation d'angle θ .

Considérons, à titre d'exemple, un élément poutre en traction-compression dans le plan.

Les relations entre les composantes des vecteurs sur les deux repères sont :

0

0

 $\cos \theta$

sin θ

 $[\lambda]$ est la matrice de transformation des composantes des forces des déplacements.

Nous pouvons donc écrire pour les deux extrémités :

$$\begin{bmatrix} P^{e} \end{bmatrix}_{x,y} = \begin{bmatrix} \lambda \end{bmatrix} \begin{bmatrix} P^{e} \end{bmatrix}_{X,Y} | (1)$$
$$\begin{bmatrix} \mathbf{D}^{e} \end{bmatrix}_{x,y} = \begin{bmatrix} \lambda \end{bmatrix} \begin{bmatrix} \mathbf{D}^{e} \end{bmatrix}_{X,Y} | (2)$$

Que devient la matrice de rigidité les axes globaux ?

La relation de rigidité dans les axes locaux de l'élément s'écrit : $[P^e]_{x,y} = [k^e]_{x,y} [D^e]_{x,y}$

Compte tenu des relations (1) et (2) la relation de rigidité dans les axes locaux peut écrire :

$$[\lambda] [P^e]_{X,Y} = [k^e]_{X,Y} [\lambda] [D^e]_{X,Y}$$

On obtient, en multipliant les deux membres de cette équation par ${}^{t}[\lambda]$ et compte tenu que :

$$\begin{bmatrix} t \\ \lambda \end{bmatrix} = \begin{bmatrix} \lambda \end{bmatrix}^{-1} \\ \begin{bmatrix} \lambda \end{bmatrix}^{-1} \begin{bmatrix} P^e \end{bmatrix}_{X,Y} = \begin{bmatrix} t \\ \lambda \end{bmatrix} \begin{bmatrix} k^e \end{bmatrix}_{X,Y} \begin{bmatrix} \lambda \end{bmatrix} \begin{bmatrix} D^e \end{bmatrix}_{X,Y}$$

La relation de rigidité dans les axes locaux s'écrit : $[P^e]_{X,Y} = [k^e]_{X,Y} [D^e]_{X,Y}$ en posant :

$$\left[\mathbf{k}^{e}\right]_{\mathbf{X},\mathbf{y}} = \left[\lambda\right] \left[\mathbf{k}^{e}\right]_{\mathbf{x},\mathbf{y}} \left[\lambda\right]$$

4.6. Assemblage :

L'énergie de déformation élastique pour un élément se calcule par :

$$W_{déf}^{e} = \frac{1}{2} \left[D^{e} \left[k^{e} \right] D^{e} \right]$$

L'énergie de déformation élastique de la structure discrétisée vaut :

$$W_{d\acute{e}f} = \sum_{\acute{e}l\acute{e}ments} W^{e}_{d\acute{e}f}$$
$$\frac{1}{2} [D] [K] [D] = \sum_{\acute{e}l\acute{e}ments} \frac{1}{2} [D^{e}] [k^{e}] [D^{e}]$$

L'identification membre à membre de cette expression permet la "construction" de la matrice de rigidité [K] de la structure [P] = [K][D]

RÈGLE PRATIQUE POUR L'ASSEMBLAGE D'ÉLÉMENTS POUTRES COLINÉAIRES :

L'assemblage de la matrice de rigidité d'une structure s'effectue en additionnant les sous matrice de rigidité de chaque élément possédant un nœud commun.

- Si le nœud 2 est le nœud commun :

- Si le nœud 3 est le nœud commun :

NB. Les nœuds sont toujours classés par ordre croissant dans la matrice.

4.7. Propriétés de [K] et inversion de la matrice de rigidité réduite [K _r] d'une structure :

4.7.1. Propriétés de [K]:

1°) **Elle est carrée symétrique** d'ordre (n×N). n est le nombre de degrés de liberté par nœud, N est le nombre de nœuds.

2°) C'est une matrice "bande".

On constate en effet que plus l'ordre de la matrice [K] est grand, plus la proportion de termes nuls est grande. L'idéal est de rassembler le plus possible les termes non nuls autour de la diagonale principale (pour former une "bande") afin d'améliorer le stockage de [K] et de diminuer le temps de calcul lors de l'inversion de [K_r] (le temps de calcul dépendant du carré de la largeur de cette bande). La largeur de la bande dépend de la numérotation des nœuds mais pas de celle des éléments.

Dans la relation précédente « n » est le nombre de degrés de liberté par nœud, « d » la plus grande différence de numérotation entre deux nœuds d'un même élément. Si la largeur de bande est optimisée lors du maillage, le stockage de la matrice (carrée) de rigidité [K] prend moins de place sur le disque (on la stocke sous forme « redressée »).

4.7.2. Inversion de la matrice de rigidité réduite [K r]:

On élimine tout d'abord dans la matrice [K] les lignes et les colonnes qui correspondent aux degrés de liberté nuls (les appuis).

Les méthodes numériques d'inversion de la matrice restante (matrice réduite [K_r]), qui peut comporter plusieurs milliers de termes, doivent tirer profit des propriétés de la matrice réduite (symétrie, largeur de bande minimum) pour réduire au maximum le temps de calcul et la mémoire utilisée.

Les différentes méthodes d'inversion sont :

1°) La méthode de GAUSS :

La méthode de GAUSS consiste à transformer la matrice réduite en une matrice triangulaire inférieure par élimination successive des inconnues dans les différentes équations. On tire la première inconnue de la première équation et on remplace son expression (en fonction des inconnues restantes) dans les autres équations. On est ramené alors à un système de (n-1) équations comportant (n-1) inconnues (1^{er} échelon de GAUSS). On procède ainsi de suite jusqu'à la dernière équation qui ne comporte plus que la dernière inconnue. On calcule toutes les inconnues en « descendant » (chaque équation ne fait intervenir qu'une seule inconnue non déterminée).

Le nombre d'opérations est $n^3/3$ où n est l'ordre de la matrice.

2°) La méthode de JORDAN :

C'est une variante de la méthode de GAUSS qui consiste à rendre la matrice réduite diagonale.

Le nombre d'opérations est $n^3/2$ où n est l'ordre de la matrice.

2°) La méthode de CHOLESKY :

Cette méthode consiste à transformer la matrice réduite $[K_r]$ en un produit $[L]^t[L]$ tel que la matrice [L] soit triangulaire inférieure.

4. PROBLEMES DE SYNTHESE

PROBLÈME N°21

1^{ère} partie

Considérons la poutre droite ABC hyperstatique ci-dessus. Toutes les liaisons sont des articulations. La section droite de la poutre est constante et son moment d'inertie de flexion est noté \mathbf{I}_{y} . Le module de YOUNG du matériau est E. La poutre est soumise à un couple de flexion P₁ appliqué en B.

Prenez comme inconnue hyperstatique la réaction en C (une force P_2 dirigée vers le haut \uparrow).

La méthode de résolution est <u>au choix</u> celle de CASTIGLIANO, ou celle de MAXWELL-MOHR. Dans les deux méthodes l'énergie de déformation due à l'effort tranchant sera négligée devant l'énergie de déformation due au moment fléchissant. Si vous choisissez la méthode de MAXWELL-MOHR écrivez l'expression littérale de la matrice de flexibilité sous la forme :

$$\left[f\right] = \frac{1}{EI_{\nu}}\left[\right]$$

Quelle que soit la méthode choisie, CASTIGLIANO ou MAXWWELL-MOHR :

1°) Indiquez quelles sont, selon-vous, les différences essentielles entre les méthodes de CASTIGLIANO et de MAXWELL-MOHR

2°) Déterminez l'expression littérale de l'inconnue hyperstatique P_2 en C en fonction de P_1 et de L en précisant bien son sens (\uparrow ou \downarrow). Calculez sa valeur numérique en Newton si P_1 = 144 Nm et L=1 m.

3°) Déterminez l'expression littérale de la rotation en B en fonction de P₁, L, E et I_y. Calculer sa valeur numérique en radian si la section droite a un moment d'inertie I_y= 0.25 cm⁴ et si E = 200 GPa. **Y**

La poutre de la 1^{ère} partie est discrétisée en deux éléments "poutre" et trois nœuds. La longueur L vaut 1m, la section droite de la poutre est constante et son moment d'inertie de flexion I_z vaut 0.25 cm⁴. Le module de YOUNG E du matériau vaut 200 GPa. La poutre est soumise au couple de flexion C= 144 Nm appliqué sur le nœud 2. Toutes les liaisons sont des articulations.

<u>On donne la matrice de rigidité d'un élément de poutre de longueur L en flexion</u> <u>dans le plan XY</u> :

$$\begin{bmatrix} \mathbf{k}^{e} \end{bmatrix} = \frac{\mathbf{E}\mathbf{I}_{z}}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix}$$

Attention ! La longueur de l'élément 1 est L/2 !

1°) Calculez numériquement (utilisez les unités SI : le mètre et le Newton) les matrices de rigidité élémentaire des deux éléments dans le repère global X,Y sous la forme :

$$\left[\mathsf{k}^{e}\right] = \frac{\mathsf{EI}_{z}}{\mathsf{L}^{3}}\left[\right]$$

2°) Calculez numériquement (utilisez les unités SI : le mètre et le Newton) la matrice de rigidité de la structure dans le repère global X,Y sous la forme :

$$\left[\mathsf{K}\right] = \frac{\mathsf{EI}_{z}}{\mathsf{L}^{3}}\left[\right]$$

3°) Calculez, dans le repère global X,Y les rotations en radian des nœuds 1, 2 et 3 et les réactions en Newton s'exerçant sur les nœuds 1, 2 et 3.

4°) Calculer en mm la flèche de la section droite située au milieu de l'élément 2. Calculez d'abord numériquement la matrice d'interpolation des déplacements [A], puis la flèche.

<u>On donne la matrice d'interpolation des déplacements d'un élément de poutre de longueur L en flexion dans le plan XY :</u>

$$\left[\mathbf{A}\right] = \left[1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3} \qquad x - \frac{2x^2}{L} + \frac{x^3}{L^2} \qquad \frac{3x^2}{L^2} - \frac{2x^3}{L^3} \qquad -\frac{x^2}{L} + \frac{x^3}{L^2}\right]$$

RÈPONSES N°21

TD-2A-S4-F412

$$\begin{bmatrix} 96 & 24 & -96 & 24 \\ 24 & 8 & -24 & 4 \\ -96 & -24 & 99 & 524 \\ 24 & 4 & -324 & 4 \\ -324 & 4 & -324 & 4 \\ -324 & 4 & -324 & -36 \\ -324 & -36 & -24 \\ -324 & -36 & -24 \\ -324 & -24 & -26 & -26 \\ -12 & -6 & 12 & -66 \\ -6 & 2 & -66 & 4 \\ \end{bmatrix}$$

$$\begin{bmatrix} [K] = 500 \begin{bmatrix} 96 & 24 & -96 & 24 & 0 & 0 \\ 24 & 8 & -24 & 4 & 0 & 0 \\ -96 & -24 & 108 & -18 & -12 & 6 \\ 24 & 4 & -18 & 12 & -6 & 2 \\ 0 & 0 & -12 & -6 & 12 & -6 \\ 0 & 0 & 6 & 2 & -64 \\ \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -56 & -24 & 108 & -18 & -12 & 6 \\ 24 & 4 & -18 & 12 & -6 & 2 \\ 0 & 0 & -12 & -6 & 12 & -6 \\ 0 & 0 & 6 & 2 & -6 & 4 \\ \end{bmatrix} \begin{bmatrix} 0 \\ 144 \\ 0 \end{bmatrix} = 500 \begin{bmatrix} 8 & 4 & 0 \\ 4 & 12 & 2 \\ 0 & 2 & 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 96 & 24 & -96 & 24 & 0 & 0 \\ -96 & -24 & 108 & -18 & -12 & 6 \\ 0 & 0 & 6 & 2 & -6 & 4 \\ \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 500 \begin{bmatrix} 8 & 4 & 0 \\ 4 & 12 & 2 \\ 0 \\ 24 \\ 0 \\ -6 & -24 & 108 & -18 & -12 & 6 \\ 0 & 0 & 6 & 2 & -6 & 4 \\ \end{bmatrix} = -0.016rd$$

$$\frac{\theta_{z_1}}{\theta_{z_2}} = -0.016rd$$

$$\frac{\theta_{z_2}}{\theta_{z_3}} = -0.016rd$$

$$\frac{\theta_{z_1}}{\theta_{z_2}} = -0.032rd$$

IUTB-LYON1-GMP-DDS

PROBLÈME N°22

1^{ère} partie

La poutre AB de longueur L et de section rectangulaire (b x h) repose sur deux appuis, comme indiqué sur la figure ci-dessous. Une force $\overrightarrow{P_1}$ est appliquée au milieu de la poutre. On se propose de déterminer l'équation de la déformée de cette poutre en flexion par la méthode de Maxwell-Mohr. (On négligera l'effet de l'effort tranchant devant celui du moment fléchissant).

Pour cela, on applique une force verticale fictive $\overrightarrow{P_2}$ en un point D. La distance AD est variable. Le paramètre correspondant est AD=x (0<x<L/2).

- 1. Justifier le choix d'introduire cette force fictive afin de déterminer l'équation de la déformée de la poutre.
- 2. En associant la force $\overrightarrow{P_1}$ à l'état #1 et la force $\overrightarrow{P_2}$ à l'état #2, écrire la relation entre le vecteur des charges, le vecteur des déplacements et la matrice de flexibilité.
- 3. Calculer les termes de flexibilité nécessaires à la résolution du problème.
- 4. Déterminer l'équation de la déformée de la poutre.
- 5. En déduire la position et la valeur de la flèche maximale.

La poutre de la 1^{ère} partie est désormais encastrée en A. Une force verticale $\overrightarrow{P_1}$ est appliquée en son centre (point *C*). Un couple $\overrightarrow{P_2}$ porté par l'axe I est appliquée à son extrémité (point *B*).

Données numériques :	L = 500 mm	<i>E</i> = 210 000 MPa		
<i>b</i> = 20 mm	<i>h</i> = 30 mm	<i>K</i> = 10 ⁶ N/m	$ P_2 = 1000 \text{ Nm}$	

On utilisera la méthode de **Castigliano**. (On négligera l'effet de l'effort tranchant devant celui du moment fléchissant).

1. Déterminer l'expression littérale de l'énergie de déformation stockée dans la poutre ABC. Puis l'écrire sous la forme

$$w_{def} = \alpha . P_1^2 + \beta . P_2^2 + \gamma . P_1 . P_2$$

Dans la suite du problème, on utilisera les variables α , β , γ dans les développements.

2. Calculer (forme littérale et application numérique) la flèche en B et C pour la même poutre dans la configuration suivante

3. Calculer (forme littérale et application numérique) la flèche en B et la réaction en C pour la même poutre dans la configuration suivante

 Calculer (forme littérale et application numérique) la flèche en B et en C, ainsi que la réaction en C pour la même poutre dans la configuration suivante (le ressort a une raideur K). En dehors de tout chargement, le ressort n'exerce aucune force sur la poutre)

1^{ère} partie

2^{éme} partie

RÈPONSES N°22

ANNEXE A1. INTEGRALES DE MOHR

A1.1 DEFINITION:

Les intégrales de MOHR sont des intégrales du type:

$$I_1 = \int_0^L y_1(x) y_2(x) dx$$

ou encore

$$I_2 = \int_0^L y^2(x) dx$$

Les résultats de ces intégrales sont donnés dans une table (voir pages suivantes) pour des combinaisons de diverse fonctions $y_1(x)$ et $y_2(x)$ linéaires ou du second degré.

A1.2 UTILISATION DE LA TABLE:

1°) Intégrales de type M_iM_k.

Soit à calculer l'intégrale du type I_1 du produit des deux fonctions y_1 et y_2 linéaires données par leur représentation graphique ci-dessous. Les quantités M_i , M_k sont positives.

Vérification:

$$y_1(x) = -\frac{M_i}{L}x + M_i$$
$$y_2(x) = \frac{M_k}{L}x$$

$$I_{1} = \int_{0}^{L} y_{1}(x) y_{2}(x) dx = \int_{0}^{L} \left(-\frac{M_{i}}{L} x + M_{i} \right) \frac{M_{k}}{L} x dx = \int_{0}^{L} \left(-\frac{M_{i}M_{k}}{L^{2}} x^{2} + \frac{M_{i}M_{k}}{L} x \right) dx$$
$$I_{1} = \left[-\frac{M_{i}M_{k}}{3L^{2}} x^{3} + -\frac{M_{i}M_{k}}{2L} x^{2} \right]_{0}^{L} = -\frac{M_{i}M_{k}L}{3} + \frac{M_{i}M_{k}L}{2}$$
$$I_{1} = \frac{M_{i}M_{k}L}{6}$$

2°) Intégrales de type M_i^2 .

Soit à calculer l'intégrale du type I_2 de la fonction linéaire y au carré donnée par sa représentation graphique ci-dessous.

Vérification:

$$y_1(x) = \frac{M_i}{L}x$$
$$I_2 = \int_0^L y^2 dx = \int_0^L (\frac{M_i}{L}x)^2 dx = \frac{M_i^2 L}{3}$$

M _i M _k		Mi	Mi 1/3 1/4	M _i X X
M _K	Mi Mk L	$\frac{1}{2}$ Mi Mk L	12 MI MK L	$\frac{1}{2}$ Mi Mk L
	12 Mi Mk L	$\frac{1}{3}$ Mi Mk L	<u>1</u> Mi Mk L	$\frac{\frac{1}{6} \text{MiMkL}(1+x')}{L}$
M _K	1 Mi Mk L	1 <u>6</u> Mi Mk L	$\frac{1}{4}$ Mi Mk L	$\frac{1}{6} \text{MIMKL}(1+\frac{x}{L})$
И _К <u> <u> </u> </u>	12 Mi Mk L	$\frac{1}{4}$ Mi Mk L	1/3 Mi Mk L	
M _K L	1 2 ^{ML} (M'+M'') L k k k	1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{4}Mi(M'_{k}+M''_{k})L$	$\frac{\frac{1}{6}\text{Mi}\left[\text{M}_{k}^{\text{H}}(1+x^{\text{H}})\right]}{\frac{1}{6}\text{Mi}\left[\frac{1+x}{L}\right]}$
	<u>1</u> мі(М¦-М'' _k) L	$\frac{1}{6}Mi(2M_{k}^{*}-M_{k}^{*})L$	14Mi(M'-M'') L	$\frac{1}{6} \operatorname{Mi}\left[\operatorname{M}_{k}^{H}\left(1+x^{H}\right)\right]$ $-\operatorname{M''}_{k}\left(1+x^{H}\right) L$
	0	<u>1</u> Mi Mk L	0	$\frac{1}{3}$ Mimkl $\frac{\ddot{X}}{L}$
P ₂ M _K L	<u>1</u> mi mk l	<u>1</u> Mi Mk L	7 48 Mi Mk L	$\frac{\frac{1}{12}\text{MiMkL}(}{\frac{3x'}{L} + \frac{x^2}{L^2}})$
P2 L	$rac{1}{3}$ Mi Mk L	12 MI MK L	48 MÍ MK L	$\frac{\frac{1}{12} \text{ MiHkL}(}{\frac{3x}{L} + \frac{x'}{L^2})}$
P ₂ M _K	2 3 Mi Mk L	<u>i</u> mi∰k L	5 12 Mi Mk L	$\frac{\frac{1}{3} \text{ MiMkL (1+}}{\frac{XX'}{L^2}})$
P ₂ L	2 3 Mi Mk L	1 Mi Mk L	<u>17</u> 48 Mi Mk L	$\frac{\frac{1}{12} \text{ MiMkL}(3+)}{\frac{3x}{L} - \frac{x^2}{L^2}}$
P, P,	2/3 Mi Mk L	5 12 Mi Mk L	17 48 Mi Mk L	$\frac{\frac{1}{12} \text{ M1MkL}(3)}{\frac{3x'}{L} - \frac{x'^2}{L^2}}$

•	Intégrales	de	MOHR	(type	MiMk)

Mi Mk	Mi Mi	M_i	$a_1 > L_1$ M_i $a_1 \rightarrow a_2$	
μ ₁ < μ ₂ μ _κ	$\frac{\text{MiMk}}{12L_2} (3L^2 - 4L_1^2)$	$\frac{\frac{MiMk}{6}L}{\frac{2}{2}L}L^{2}L^{2}L^{2}L^{2}L^{2}L^{2}L^$	$\frac{\operatorname{MiMLL}}{6a_1L_2}(L^2 - a_2^2 - L_1^2)$	
	$\frac{MiMk}{12L_{1}} (3L^{2} - 4L_{2}^{2})$			

<u>Intégrales de MOHR</u> (type Mi²)

'_

M _i	Mi ² L	P2	$\frac{1}{5}$ Mi ² L
M _i L	$\frac{1}{3}$ Mi ² L	P2	15 Mi ² L
M _i	$\frac{1}{3}$ Mi ² L		8 15 Μi ² L
	$\frac{1}{3}$ Mi ² L	P2	⁸ / ₁₅ Μί ² L
	$\frac{1}{3}$ Mi ² L	P2	15 Мі ² L
M _i , M _i ,	1/3(Mi' ² +Mi'Mi"+Mi" ²)L		
	1/3(Mi ² -Mi'Mi"+Mi" ²)L		

