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Highlights
Biodiversity underlies many crucial eco-
system functions and nature’s contribu-
tions to people (NCP), but they are
typically mapped and predicted with
approaches that ignore information on
species and communities.

At the same time, great progress has
been made in statistical biodiversity
modeling to predict aspects of biodiver-
sity over space and time. However,
breakthroughs in this field have yet to
Accurate predictions of ecosystem functions and nature’s contributions to peo-
ple (NCP) are needed to prioritize environmental protection and restoration in the
Anthropocene. However, our ability to predict NCP is undermined by approaches
that rely on biophysical variables and ignore those describing biodiversity, which
have strong links to NCP. To foster predictive mapping of NCP, we should har-
ness the latest methods in biodiversity modeling. This field advances rapidly,
and new techniques with promising applications for predicting NCP are still
underutilized. Here, we argue that employing recent advances in biodiversity
modeling can enhance the accuracy and scope of NCP maps and predictions.
This enhancement will contribute significantly to the achievement of global
objectives to preserve NCP, for both the present and an unpredictable future.
find widespread use in predicting NCP.

In particular, new approaches that
employ diverse data sources, esti-
mate different dimensions of biodiver-
sity, incorporate biotic interactions,
and address analytical uncertainty
could have profound applications for
NCP prediction.

Here, we describe the current state of
NCP prediction and its challenges, high-
light potential benefits of biodiversity
modeling advances, and end with how
these improved predictions can help to
meet goals of international frameworks
for biodiversity conservation.
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Predictions of ecosystem functions and NCP need more biodiversity information
Many ecosystem functions and NCP (see Glossary) are under threat by human-induced envi-
ronmental change [1]. High-resolution model predictions of key NCP, including decomposition
of organic matter, pest control, crop pollination, and seed dispersal for agriculture and habitat
maintenance, are essential for targeted management and preservation [2,3]. There are strong
links between biodiversity and NCP recognized by the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (IPBES) [1] and supported by a wealth of em-
pirical research [4,5], but despite this, NCP predictions rarely employ biodiversity information
[6], which we define here as data describing particular species or the variety of living things
and their attributes. Even for NCP directly supported by species, predictions are often made
using expert knowledge, biophysical variables, land use, land cover, and topography [7,8].
These data are widely analyzed with decision-support software (e.g., InVEST [9], ARIES
[10], ESTIMAP [11]) that have important limitations: they are typically parameterized based
on expert consultation and site-specific measurements and monitoring. These require prohib-
itive costs and time [12], compromise transferability to new conditions, and can have poor flex-
ibility for the customization of underlying data or model structures [13].

Predictions and mapping of NCP such as crop pollination or pest control that are performed by
species or functional groups can be improved by species-level data [14,15]. Even ecosystem
functions and NCP like nutrient cycling or water filtration that may not rely on particular species
have connections to functional groups or vegetation types, and thus also necessitate consider-
ation of biodiversity [16]. Still, NCP models more typically employ proxies from biophysical vari-
ables (Figure 1), such as agricultural land-cover data for pollinators (e.g., [17]). There are
multiple reasons why biodiversity is not central in NCP prediction. First, NCP predictions are typ-
ically made by land-use modelers that traditionally work with remotely sensed or socioeconomic
data [18]. Second, multiple knowledge shortfalls regarding species’ natural histories, interactions,
distributions, abundances, and others [19] have resulted in persistent barriers to investigation and
research biases worldwide that are particular to certain regions and taxa. Using biodiversity data
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for NCP assessments at the very least requires information on where species are and what they
do, and difficulties arising from knowledge shortfalls are exacerbated when multiple species or
communities are considered. Finally, biodiversity modeling and mapping for multiple species or
entire assemblages requires tools and approaches not yet widely used by NCP researchers.

Biodiversity modeling: an emerging paradigm for NCP predictions
Considering the strong links between biodiversity and NCP, models that predict different aspects
of biodiversity have great potential to improve NCP predictions (Figure 1) [20]. For example,
species distribution models (SDMs) and macroecological models (MEMs) are widely
applied over space and time for biodiversity conservation and management [21,22]. Modeled
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Figure 1. Conceptual diagram of how advances in biodiversity modeling can improve the conceptual workflow to predict ecosystem functions and
nature’s contributions to people (NCP).
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Glossary
Analytical uncertainty: the variance in
different possible outcomes that is
associated with some aspect of the
methodology, such as the processes of
data observation and/or generation, the
model structure, the model
parameterization, or the model
predictions.
Biophysical variables: variables
describing aspects of the physical
environment of the terrestrial biosphere.
Typically measured via remote sensing,
these can include leaf area index,
greenness indices, and vegetation cover
extent and type.
Data integration: an approach to
combine multiple data sources with
different sampling designs and data
types in a single statistical modeling
framework for improved prediction and
inference.
Decision-support software: software
that uses environmental data (typically
describing biophysical or landscape
variables) to produce outputs that
support the decision-making process for
natural resource management.
Macroecological model (MEM): a
model that estimates the statistical
correlation between aggregated
biodiversity data and relevant
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range or biodiversity estimates of service-providing species and communities indeed provide key
information that can potentially improve a wide range of NCP predictions (Box 1) [23,24], but the
full potential of these models to predict NCP in space and time or to understand trade-offs and
synergies remains underutilized.

In recent years, there has been considerable innovation in biodiversity models. For SDMs in par-
ticular, recently established best practices provide methodological guidance [25,26] and new
metadata standards promote reproducibility [27]. Moreover, the growing biodiversity modeling
community has developed diverse programming tools that automate complex analyses and
push the field forward [28], and interactive applications have improved access to new methods
(e.g., Wallace EcoMod [29], NicheToolBox [30]). Integration of biodiversity information has been
recognized as one of the new challenges for NCP models [31], making it opportune to take ad-
vantage of biodiversity modeling innovations for NCP prediction. Here, we argue that these
methods have great potential to improve the accuracy and scope of NCP prediction, particularly
relating to the mapping of predicted locations of high ecosystem function and NCP provision. We
focus our discussion on statistical models as these employ the most readily available biodiversity
data for most species, although we also discuss promising applications for mechanistic or hybrid
biodiversity models. We conclude with our ideas for how NCP predictions that incorporate biodi-
versity can directly benefit human society.

Advances in biodiversity modeling that can improve NCP predictions
Harnessing explanatory power from different data types
Recent advances in biodiversity modeling provide new ways forward to combine various data
types with unique information. One example is data integration, a framework that leverages
the complementary strengths of different datasets to improve SDM predictions. Opportunistic
species occurrence data are easy to acquire and can cover a broad geographical extent, but
Box 1. Innovative applications of biodiversity models to NCP prediction

Althoughmost predictions of ecosystem functions and NCP have traditionally relied on biophysical variables and decision-
support tools, here we highlight some innovative examples that have used SDMs. Polce et al. [94] demonstrated how SDM
range estimates can be used as direct inputs to decision-support tools, in this case to predict pollinator services in the UK.
Ramel et al. [95] made NCP predictions with biophysical variables and considered them in tandem with SDMs for spatial
prioritization of conservation areas. More typically, however, individual SDM range estimates or stacks to estimate richness
have been employed as estimates of NCP provision, sometimes with associated weights. Schulp et al. [96] used SDMs
and resident survey data to estimate the richness and importance of wild food species in Europe. Modeled range esti-
mates were combined with species trait data linked to NCP by Brasileiro et al. [97] for bats (crop pest control) in Brazil
and by Perennes et al. [98] for bees (crop pollination) in Europe. Ceau u et al. [14] used SDMs to estimate richness for mul-
tiple species across Europe weighted by medicinal value, edibility, and functional efficiency for NCP. Rey et al. [99] assem-
bled a relational table of NCP weights for species in the Swiss Alps and combined SDMs to map broad NCP categories.
Future climate change impacts on NCP provision are also increasingly estimated with SDMs. Some examples are Civantos
et al. [53] for the richness of terrestrial vertebrates (crop pest control) across Europe, Mokany et al. [100] for the dispersal
capacity of frugivores (seed dispersal) in the Australian Wet Tropics, Moor et al. [101] for functional traits of wetland plants
(flood attenuation, etc.) in Sweden, and Mori et al. [102] for trees and shrubs (biomass production) around the world. Fu-
ture rangemismatch between NCP providers and their food source was found by Sales et al. [103] for seed dispersers and
pollinators of the Brazil nut tree.

There are far fewer examples of the use of MEMs and dimensions of diversity besides taxonomic richness to predict NCP,
although some examples have emerged in recent years. Timoner et al. [104] compared predictions of aquatic insect
richness based on MEMs and stacked SDMs to predict indicators of stream and river health in Switzerland. Fourcade
and Vercauteren [105] used MEMs to constrain stacked SDM richness estimates for earthworms in France and mapped
functional richness and evenness based on community composition predictions. An increase in studies employing differ-
ent kinds of biodiversity models and metrics, as well as those focusing on understudied taxa and regions outside the USA
and Europe (e.g., [102]), should improve our understanding of the spatial patterns of NCP provision and help to fill knowl-
edge gaps for the globe. Reducing barriers to such research should be a major goal of the field.

environmental variables. Biodiversity
data can represent measurements of
species richness, species turnover
(i.e., community change over space and/
or time), phylogenetic relationships,
species functional traits, or genetic
information. Based on the estimated
relationships between biodiversity and
the environment, these models can
make predictions of biodiversity in space
(including unobserved sites) and time
(including past and future scenarios).
Nature’s contributions to people
(NCP): as defined by IPBES, NCP
includes both positive and negative
contributions to human well-being, with
nature playing a vital role. The concept of
NCP considers a wide range of
relationships between people and
nature, including benefits to people often
referred to as ecosystem services that
tend to be undervalued economically.
Ecosystem functions, such as primary
productivity, nutrient cycling, and
decomposition, underpin these benefits
to people. Here, we focus on so-called
‘regulating’ NCP such as crop
pollination, seed dispersal, pest control,
water filtration, carbon sequestration,
and others. NCP such as these are
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essential in maintaining human well-
being and promoting sustainable
development.
Species distribution model (SDM): a
model that estimates the statistical
correlation between data on species’
occurrences (with or without absence
data; alternatively, on abundance) and
relevant environmental variables. Based
on the estimated environmental niche of
the species, these models can estimate
species’ distributions by
predicting habitat suitability (or
probability of presence or abundance) in
space (including unobserved sites) and
time (including past and future
scenarios). Multispecies models now
allow predictions for the whole set of
species observed in communities, which
should further help in mapping NCP.
Species interactions: spatial or
temporal co-occurrence between
species that results in population effects
on one or more of them. These can be
direct, as in predation, competition,
mutualism, parasitism, or
commensalism, or indirect, as in effects
from trophic cascades or apparent
competition. The vital functionality of
ecosystems often arises from species
interactions.
Stacked SDM: the combination of
multiple single-species SDMs, often by
summing continuous or binary
distribution predictions, to estimate
biodiversity metrics such as taxonomic
richness or turnover.
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they are nonetheless often characterized by sampling biases. Most SDM studies lack structured
sampling designs that can produce presence/absence and count data with reduced bias. This is
because structured designs typically cover smaller geographic extents, have relatively narrower
taxonomic representation, and can require sizable financial and labor costs. Further, unlike
species’ presence data, reliable data on species’ absences are much scarcer. Although the pre-
diction of interest for SDMs is the probability of species’ presence (or abundance), the use of
opportunistic data limits their predictions to those of relative habitat suitability [32]. However,
recent methodological developments in SDM data integration, like spatial point process models,
can combine opportunistic and structured occurrence (or count) data to make more accurate
and less biased inferences on species’ environmental responses, distributions, and abundance
patterns [33,34]. This approach should help to make quantitative assessments of potential
NCP such as pollination, seed dispersal, and food and material production by creating predic-
tions of abundance for service-providing species over a large geographical extent (Figure 2) [35].

Different types of environmental data from biodiversity monitoring systems can also be employed
to improve biodiversity models for NCP. Advances in remote sensing have produced datasets
that quantify variables such as land-cover heterogeneity and leaf spectral diversity at increasingly
fine spatial resolutions [36]. Such rich landscape information can be harnessed for biodiversity
models via new techniques such as convolutional neural networks, which integrate landscape
data in spatial windows around occurrence point data to model species distributions [37].
These algorithms could be used to model insect pollinator diversity, for example, using the sur-
rounding land-cover matrix instead of relying solely on point estimates of insect occurrence. In
practice, using deep-learning algorithms for NCP prediction could foster more high-resolution
mapping, whichmight be particularly useful in mosaic suburban habitats [37]. Managing biodiver-
sity in interconnected yet patchy networks of land under human use, prevalent in most areas of
the world with dense development, will be necessary to meet some of the 30% protection targets
of the Kunming–Montreal Global Biodiversity Framework (GBF) (e.g., Target 3, so-called ‘30 by
30’; Target 2 for restoration). Biodiversity data at high spatial resolutions (<100 m) should capture
local-scale differences in land-cover and patch characteristics (e.g., distance to edge) important
for habitat suitability in green and blue corridors.

Not just a single variable: modeling the many dimensions of biodiversity
NCP provisions are linked not only to individual species’ ranges but also to species richness [38]
and turnover [39], as well as other aspects of biodiversity. Making predictions for each requires
different modeling strategies, each with multiple approaches [40]. For example, community com-
position estimates can be made with stacked SDMs (e.g., [41]) or joint SDMs that model multi-
ple species together (e.g., [42]). Both are typically made using species’ presence data, but they
can alternatively use abundance data: in this case, thesemodels can, in theory, estimate commu-
nity indices like rank-abundance patterns. Species richness can be calculated based on these
SDM-based community estimates or modeled directly as a function of environmental variables
with MEMs. Although species richness is the most typically estimated biodiversity variable [43],
considering it alone is insufficient and can lead to spurious inferences about change in biodiversity
and NCP [44]. For instance, species richness can be heavily influenced by wide-ranging species
and thus not be informative about diversity centers for rare species, which are also important for
ecosystem functions [45]. To address this, species richness can beweighted by range size to cal-
culate ‘range rarity’, a metric that emphasizes small-ranged species [41]. High spatial community
turnover, resulting in more species and more community variability at increasing spatial scales, is
important in maintaining crop pollination and can supersede contributions from dominant species
alone [39]. Turnover patterns can be estimated with generalized dissimilarity models [22], which
have been used to predict trends in global plant diversity linked to NCP and the relative strengths
Trends in Ecology & Evolution, April 2024, Vol. 39, No. 4 341
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Figure 2. Example workflows that utilize advances in biodiversity modeling to predict nature’s contributions to people (NCP) linked to species and
communities. (A) Macroecological models can estimate different dimensions of pollinator diversity, including those describing species interactions, and evidence of
importance to NCP is included for each diversity metric. (B) Species distribution models can estimate habitat suitability via ensembles or abundance via data
integration, and both can quantify uncertainty. (C) Examples of richness maps focusing on Europe for species that provide NCP. See [38,39,50,51,53,71,72,96].
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of different anthropogenic stressors [46]. Phylogenetic and functional (or trait) diversity are two
other biodiversity indices whose patterns can differ greatly from taxonomic (i.e., species) diversity.
These indices in particular have strong relationships with NCP provisions. It is expected that
higher species richness enhances ecosystem functioning and NCPs through species comple-
mentarity (niche differentiation and facilitation) and the selection effect (dominance of species
with particular traits) [47]. As these effects mostly depend on variation among species, phylo-
genetic and functional diversity are likely to offer more comprehensive representations of these
distinctions than basic measures of species richness [48–51]. For example, woody plant as-
semblages with high phylogenetic diversity are linked to a richer variety of NCP supporting
human habitation [48], and exploring differences between functional and taxonomic turnover
of pollinators can improve our understanding of how mutualistic interactions respond to the
environment [51].

Models that estimate different dimensions of biodiversity have many applications for NCP predic-
tion. SDMs or MEMs can be used to predict specific trophic or functional groups from basic
knowledge on interactions (e.g., [52]) that are directly linked to specific ecosystem services like
pest control (e.g., [53]) or carbon storage (e.g., forest biomass, forest functional diversity [54]).
Predictions of pollinator richness or trait diversity (pollination type, etc.) with MEMs can identify
342 Trends in Ecology & Evolution, April 2024, Vol. 39, No. 4
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areas with high potential for pollination services and areas at risk under climate change or land-
use intensification. Similar to calculating range rarity, the relative importance of particular species
for NCP provisions can be used to define weights to predict NCP. For instance, one might
upweight the role of domestic and wild bees over flies for cropland pollination because of their
higher pollination efficiency for specific crops [55]. Some aspects of NCP may be more tightly
associated with particular species (e.g., specialist pollinators and their hosts) as opposed to func-
tional groups or communities, and for these SDMs may be particularly appropriate. Finally,
multiclass classification models, which are developing quickly in the field of artificial intelligence,
can be used to model multiple NCP jointly (e.g., pollination, seed dispersal, and pest control)
and implicitly account for associations between NCP. These approaches should prove particu-
larly useful for NCP prediction [56], especially because they can incorporate rare NCP with
fewer observations that would benefit from joint modeling [57].

Incorporating biotic interactions
The supply of most NCP is the outcome of species that interact with each other. Animals and
plants interact to produce pollination provision and seed dispersal, while predators and prey
interact to provide pest control. However, knowledge of species interactions has long been
lacking (i.e., Eltonian shortfall [58]), making it difficult to incorporate this information for NCP pre-
diction. Recently, however, an upsurge of interaction databases (e.g., GLOBI) and initiatives to
build macroecological knowledge on species interactions (e.g., [52]) have aided the exploration
of deeper relationships between species and NCP [59]. For cases when particular interactions
are primarily responsible for NCP (e.g., mutualism between plants and insects for pollination),
incorporating information on these interactions into models that are mainly built with abiotic pre-
dictor variables (e.g., climate, land cover, soil, topography) can improve not only the accuracy and
realism of SDMs [60], but also the utility of species’ distributional estimates for NCP prediction.

Integrating species interactions into SDMs requires different strategies depending on the nature
of the interaction. When the presence of the focal species has a limited impact on populations
of the interacting species, SDM predictor variables can include information on interactors. For ex-
ample, when predicting the range of a pollinator or seed disperser, information on food plants
(e.g., range maps, co-occurrence, diversity) can be used as predictor variables, provided con-
sumption has limited impacts on plant populations (e.g., [61,62]). However, when the focal spe-
cies strongly impacts the interactor, the interactor should not be used as a predictor for a SDM
[63,64]. Examples would be systems where two populations strongly affect each other, such
as species that prey on or compete with agricultural pests, or mutualists with plants that promote
habitat restoration. In these cases, SDMs can be paired with ecological networks that contain
information on interaction strength [65], population-demographic models [66], or joint SDMs
that can estimate how the presence of one or more species conditionally affects the probability
of another species being present (e.g., [67]). Alternatively, range maps from SDMs built only
with environmental predictors (or those from interacting species not affected by the focal species)
can be edited to remove areas with negative interactions that make presence unlikely [68].
Techniques also exist to correct biodiversity predictions by removing candidate species from
the predicted species pool based on knowledge of biotic filters (e.g., SESAM [69]).

As MEMs can predict taxonomic, functional, or phylogenetic diversity, they can also be used to
predict the diversity of species interactions as functions of environmental variables. Hotspots
can represent areas with dense interaction networks that are resilient to perturbation and extinc-
tions, making patterns quite different from other diversity indices [70]. Interaction diversity can be
particularly suitable for NCP prediction as it summarizes the interactions that generate and main-
tain NCP, such as those between plants and seed dispersers or pollinators (Figure 2) [71,72],
Trends in Ecology & Evolution, April 2024, Vol. 39, No. 4 343
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agricultural pests and their predators, and networks of subterranean organisms promoting soil
fertility [73]. Interaction diversity is also important to support community stability [74] and thus
likely to ensure the sustained provisioning of NCP over time; this topic needs to be explored by
further research.

Addressing analytical uncertainty throughout the modeling workflow
As different algorithms, data, and parameterizations can result in very different predictions [75], it
is important to explore sources of analytical uncertainty in the modeling workflow when imple-
menting policy or management for NCP [76]. As NCP predictions have typically used single
models without quantifications of uncertainty (only about 50% of peer-reviewed papers since
2016 [7]), recent efforts seek to integrate uncertainty calculations into biophysical modeling
frameworks [77]. Although discrepancies between similar methods remain and more work
must be done to standardize best practices, NCP predictions can nonetheless benefit from
methods developed to measure and report multiple sources of biodiversity model uncertainty, in-
cluding data quality and biases [78], choice of predictor variables [79], model algorithm behavior
[80], and decisions regarding datasets for model transfer such as future climate scenarios [81].

Uncertainty for biodiversity models can be explored and quantified in different ways. Randomiza-
tion analyses mimic model behavior but simulate one process randomly, and results can be com-
pared with biodiversity model predictions to estimate bounds of uncertainty. For example,
uncertainty in the data observation process can be quantified using simulations that randomize
occurrence record locations or the effects of sampling bias [82]. Similarly, null models built with
random species occurrence data can help to estimate the significance of empirical performance
Box 2. International frameworks call for NCP–biodiversity modeling integration

SDMs and MEMs have been used in the IPBES Expert Group on Scenarios and Models to generate biodiversity models for biodiversity and ecosystem services sce-
narios (BES-SIMs) [106]. New challenges have been highlighted in predicting the provision of ecosystem services (NCP), including the integration of species-level bio-
diversity into NCPmodels and expansion to consider other aspects of biodiversity [31]. In response, new frameworks were developed to combine NCP and biodiversity
models [6] and global NCP estimates using SDMs have been demonstrated [102]. The first joint report by IPBES and the Intergovernmental Panel on Climate Change
(IPCC), released in 2021 [107], emphasizes the need to carefully assess the link between climate change and biodiversity change, and biodiversity models that use cli-
matic predictor variables can help to bridge the existing gap. Already, global climate models are beginning to incorporate biological processes more explicitly in addition
to geophysical ones, taking into account the feedback effects of the biosphere on the climate system [108].

The launch of the Kunming–Montreal GBF in December 2022 (CBD/COP/15/L25) provides an opportunity to utilize advances in biodiversity modeling for NCP projec-
tions, which is critical to the achievement of multiple goals and targets. For instance, Target 11 is aimed at ensuring NCP, including ecosystem functions and services,
through nature-based solutions and/or ecosystem-based approaches for the benefit of people and nature. However, the roles of models and predictions are not well
represented in the GBF, and we think they are critical to achieve the outcomes of biodiversity targets and goals.

The most closely watched target in the GBF is Target 3, which aims to protect 30% of the planet by 2030 (the ‘30 by 30’ target). However, it is important to note that
Target 3 carries the implicit assumption that current climate conditions are static and thus does not consider the potential for species distribution changes and extinc-
tions associated with climate change. As such, it is important to achieve Target 8 focusing on climate change mitigation and adaptation [109], as protected areas es-
tablished in currently biodiverse areas may have low efficacy if future climate significantly alters the distribution of biodiversity. Therefore, there is much potential for
biodiversity models to inform decision-making for Targets 3 and 8 regarding the establishment and management of protected areas based on both current biodiversity
predictions and future projections for different climate scenarios (Figure I).

In a more practical context, models can play a significant role in addressing societal issues, as exemplified by GBF Target 15, which focuses on nature-related disclo-
sures by companies and financial institutions. This target highlights the critical needs to evaluate environmental risks and promote sustainability in business sectors.
Given the increasing emphasis on the sustainable utilization of natural resources and the imperative for economic valuation [110], initiatives such as the Taskforce on
Nature-related Financial Disclosures (TNFDii) and the Finance for Biodiversity Pledgeiii are gaining prominence. SDMs and MEMS can provide valuable tools to conduct
detailed analyses that respond to these emerging socioeconomic frameworks (Figure I). In light of these international policy and business trends, it is becoming ever
more vital for business and financial entities to take clear actions toward the conservation and sustainable use of biodiversity.

SDMs and MEMs are instrumental for biodiversity predictions, offering significant potential to enhance emerging frameworks in business, finance, and policy. These
models can play a crucial role in ensuring that future biodiversity protection schemes are well informed and effective, aligning with their intended objectives of conser-
vation and sustainable use. By integrating these ecological models into decision-making processes, we can pave the way for more responsible and effective approaches
to addressing the complex challenges at the intersection of ecology, economics, and sustainability.
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Figure I. Species distribution models (SDMs) and macroecological models (MEMs) can contribute to the achievement of the objectives outlined in
the Kunming–Montreal Global Biodiversity Framework (GBF). In this context, we explore several (but not all) potential applications, although the GBF does not
explicitly prescribe the use of thesemodels to fulfill its objectives. Abbreviations: NCP, nature’s contributions to people; OECMs, other effective area-based conservation
measures; PAs, protected areas.
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metrics [83] and methodological biases in model transfer to different climate change scenarios
[84]. An alternative is to use Bayesian models that explicitly estimate the posterior distribution
of parameter values, which enables the calculation of posterior variance and credible intervals
(Figure 2) [34]. Model complexity (i.e., shapes of model responses) can be examined with
hyperparameter tuning or by building multiple models with different complexity settings and
selecting the best performing model [85]. Ensemble modeling combines the outputs of multiple
model algorithms, weighted (or not) by model performance on testing data. Ensemble modeling
allows the calculation of prediction variance among models and the mapping of algorithm uncer-
tainty caused by differences in model behavior (Figure 2) [75]. Once calculated, measurements of
model uncertainty can be incorporated into environmental planning and decision-support tools
(e.g., Modern Portfolio Theory [86], Marxan [87]).

Mechanistic biodiversity modeling for NCP prediction
While wemainly discussed how statistical biodiversity models can help to predict NCP across scales,
there aremechanistic or semi-mechanistic (hybrid) alternatives.Mechanistic biodiversitymodelsmake
predictions of NCP that more directly consider the mechanisms that drive ecosystem function. For
instance, dynamic vegetation models are able to predict the spatial and temporal dynamics of vege-
tation types, which can be good proxies for NCP like food and wood production [88], although these
remain restricted to vegetation-related NCP. Some mechanistic SDMs consider physiological con-
straints when estimating relationships with climate to improve the realism of future predictions [89].
Knowledge of thermodynamic limitations should lead to more accurate projections of NCP under
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climate change scenarios, but such information is not available and/or difficult to acquire for many
species. Another promising avenue is the development of hybrid approaches that integrate mecha-
nistic information such as dispersal limits, demographic rates, or physiological parameters into statis-
tical modeling approaches [90,91]. Thesemodels require less parameterization than fully mechanistic
models and can utilize predictions fromSDMs andMEMs. Some new developments also account for
species interactions, which have the potential to better represent NCP as discussed earlier. In one ex-
ample, demographic Lotka–Volterramodels, trait relationships, and statistical modelswere combined
to predict the abundance distributions of interacting species in species-rich systems [92]. Although
the field is moving in the direction of more integration of statistical and mechanistic models, these ap-
proaches still require much data and thus may not be readily applicable to less-studied species
groups, such as invertebrates, that play crucial roles in providing important NCP. That said, consid-
ering the great potential of mechanistic biodiversity models to improve NCP predictions, more re-
search needs to be done on this front, especially concerning which study systems are most
appropriate for each approach [93].

Concluding remarks
The Kunming–Montreal GBF of the UNConvention onBiological Diversity (CBD) has become clear,
and the need to jointly conserve biodiversity and derived public benefits has been broadly recog-
nized by international consortia and environmental conservation frameworks. In this context, recent
advances in biodiversity modeling have great potential to improve predictions of these benefits and
functions that are supplied and supported by biodiversity (Box 2), and this pursuit leads to new and
exciting research directions (see Outstanding questions). In addition to these directions, we need
more comparative studies that quantify how predictions of NCP are improved (or not) when biodi-
versity models are employed. The 2050 Biodiversity Vision of the GBF is a world living in harmony
with nature, and the next generation of biodiversity models gives us powerful tools to help society
realize this nature-positive future.
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