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Organisation des séances 

Nombre de séances de TD : 10 

 

Chapitre : Torseur de section 

Séance N°1 :  - Problème N°1 
Séance N°2 :  - Problème N°2 

- Problème N°3 
Séance N°3 :  - Problème N°5 

- Problème N°7  
Séance N°4 :  - Problème N°7  

- Problème N°9 

✓ Devoir N°1 : (1h30 – 2h pour 1/3 temps) Torseurs de cohésion (plan et espace) 

Chapitre : Traction/compression 

Séance N°5 :  - Problème N°10  
- Problème N°11 

Séance N°6 : - Problème N°11 
- Problème N°14 

Chapitre : Hyperstatisme et treillis  

Séance N°7 : - Problème N°17 
- Problème N°18 

- Devoir N°2 : (1h30 – 2h pour 1/3 temps) Traction/compression et treillis 

Chapitre : Cisaillement 

Séance N°8 : - Problème N°21 
- Problème N°22 

Séance N°9 : - Problème N°25 
- Problème N°26 

Chapitre : Synthèse 

Séance N°10 : - Problème N°28 

✓ Devoir SAE 2.23 : (1h30 – 2h pour 1/3 temps) DDS S2, Méca S1 et Sdm S1 

Nota :  

- Des éléments de corrections sont disponibles sur le site du laboratoire de DDS   

(http://dds.univ-lyon1.fr/) 

Absence à un devoir 

En cas d’absence à un devoir : 

- Si votre absence est justifiée par la direction des études, vous avez une semaine à compter 

de la date du devoir pour demander par mail (benjamin.payet@univ-lyon1.fr et 

djibrilla.noma@univ-lyon1.fr)  de rattraper. Il vous sera alors communiqué un horaire 

pour venir passer l’examen de rattrapage.  

- Si votre absence n’est pas justifiée par la direction des études : 0 au devoir 

http://dds.univ-lyon1.fr/
mailto:benjamin.payet@univ-lyon1.fr
mailto:djibrilla.noma@univ-lyon1.fr
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Les correspondances des liaisons en DDS – Méca - Conception 

Le tableau ci-dessous donne la correspondance des notations que vous pourrez rencontrer tout 

au long des modules de DDS pour la résolution de problèmes plans : 

Nom de la liaison Symbole DDS Symbole normalisé 

Appui simple 

 
 

Articulation 

  

Encastrement 

 

 

Appui plan 

 

 

Méthodologie pour la recherche du point le plus sollicité d’une structure 

Etape N°1 : Réalisez le bilan des actions mécaniques extérieures (BAME) agissant sur la 
structure. 

Etape N°2 : Déplacez (méthode du bras de levier ou Varignon) l’ensemble des actions 
mécaniques extérieures au point où il y a le plus grand nombre d’inconnues.  

Etape N°3 : Appliquez le PFS : 

{
∑Rext→S⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0⃗ 

∑Mext→S
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0⃗ 

 

Etape N°4 : Etablir pour chaque tronçon de poutre le torseur des actions internes (torseur 
de section) 

Etape N°5 : Tracez sur un diagramme chaque sollicitation en fonction de la longueur du 
tronçon. Inscrire les valeurs extrêmes.  

Etape N°6 : Déduire graphiquement le point le plus sollicité 

Nota : Cette méthodologie marche toujours, mais dès fois on peut aller plus vit 
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Torseur de cohésion 
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  Problème N°1 : Etude d’escalier suspendu 

 

On modélise une marche d’escalier comme 

une poutre rectangulaire en porte-à-faux, 

encastrée dans le mur (en 𝑥 = 0) et libre à 

l’extrémité (en 𝑥 = 𝐿). 

On cherche à étudier les efforts internes induits 

par l’application du poids d’un individu, modélisé 

par une force verticale (notée 𝐹 ) appliquée à une 

distance « 𝑎 » du mur. 

 

Données du problème : 

- Longueur de la marche : 𝐿 = 1 m 

- Poids de l’individu : 𝐹 ⃗⃗  ⃗ = −200 𝑦  [N]   

- Section rectangulaire : 𝑙 = 0,19 m ; ℎ = 0,04 m 

 

 

 

Question N°1 : La théorie des poutres est-elle applicable à cette situation ? Justifiez votre 
réponse. 

Question N°2 : Proposez une modélisation plane de la poutre en fonction des paramètres 𝐹, 𝐿 
et 𝑎 (𝑎 étant la position du point d’application de la force par rapport à 
l’encastrement).  

 

Pour la suite, on considère que la force 𝐹 est appliquée à l’extrémité libre (𝑎 = 𝐿). 

Question N°3 :  Quelle est la signification physique d’un torseur de section dans une section ? 
Donnez sa représentation sous forme de torseur. 

 

Question N°4 : a) Déterminez les composantes du torseur de section dans la marche en 
utilisant l’expression du torseur « amont » en fonction de 𝐹, 𝐿 et 𝑎. 
Faire un schéma de la partie isolée et représenter les actions mécaniques 
extérieures. 

b) Déterminez les composantes du torseur de section dans la marche en 
utilisant l’expression du torseur « aval » en fonction de 𝐹, 𝐿 et 𝑎. 
Faire un schéma de la partie isolée et représenter les actions mécaniques 
extérieures. 

c) Comparez les réponses aux questions précédentes et concluez.  
 

Question N°5 : Tracez l’évolution des composantes du torseur de cohésion  

       Diagramme des efforts internes le long de la poutre. 

Question N°6 : Quel est le point le plus sollicité de la poutre ? Quel est l’intérêt de l’identifier ? 

 

CORRECTION 

Question N°1 : Oui il est possible d’étudier cette structure du point de vue de la théorie des 
poutres car une des dimensions (la longueur « 𝐿 » de la poutre, ici 1 mètre) est 

 
 

 

Figure N°1 : Vue de l’escalier 

 

 

Figure N°1 : Vue de l’escalier 
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grande (rapport supérieur à 5) devant les deux autres (les dimensions 
transversales, 𝑙 = 190 mm et ℎ = 40 mm).  

Question N°2 : La modélisation retenue est celle de la poutre console ou « encastrée libre » : 

 

 

Prendre une modélisation qui confond l’extrémité de la poutre et le point 
d’application de l’effort permet d’obtenir la configuration la plus 
dimensionnante. En effet le « bras de levier » est ici maximum.  

 
 

Question N°3 : Le torseur de section (ou autrement dit torseur de cohésion ou torseur des 
efforts intérieurs) modélise l’action mécanique exercée par le tronçon aval 
(𝐸2) de la poutre sur le tronçon amont (𝐸1), de part et d’autre d’une coupure 
fictive. Il représente les actions internes de la poutre. Ce torseur est exprimé 
au point G, centre de la section, dans le repère local R lié à la poutre. 

 

{𝜏𝑖𝑛𝑡}𝐺,𝑅  = {

𝑁𝑥 𝑀𝑡𝑥
𝑇𝑦 𝑀𝑓𝑦
𝑇𝑧 𝑀𝑓𝑧

}

𝐺,𝑅

= {
effort normal suivant 𝑥 Moment de torsion suivant 𝑥  
effort tranchant suivant 𝑦 Moment fléchissant suivant 𝑦  

effort tranchant suivant 𝑧 Moment fléchissant suivant 𝑧 

}

𝐺,𝑅

 

  

Question N°4 : a) En utilisant le torseur « amont » ou la partie « E1 » 

L’utilisation de cette partie de la poutre demande de connaitre les efforts extérieurs en A : 

 

Ainsi : 

{𝜏𝑖𝑛𝑡}𝐺1 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1 = −{𝜏𝐴}𝐺1 

Ici, le torseur des actions extérieures en A est inconnu. Il convient de le calculer à partir du 
PFS.  

1°/BAME  

{𝜏𝐴}𝐴,𝑅 = {

𝑋𝐴 −
𝑌𝐴 −
− 𝑁𝐴

}

𝐴,𝑅

;  {𝜏𝐵}𝐵 = {
0 −
−𝐹 −
− 0

}

𝐵,𝑅

 

2°/ On déplace l’ensemble des torseurs au même point de réduction (ici en B) 

𝑦  

𝑥  

a 

L 

F 

F 

𝑥  

𝑦  

𝑥1 

G1 

E1 

B A 

B 
A 
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{𝜏𝐵}𝐴,𝑅 = {
0 0
−𝐹 0
0 −𝐹𝐿

}

𝐴,𝑅

en effet  𝑀𝐴⃗⃗ ⃗⃗  ⃗ = 𝑀𝐵
⃗⃗ ⃗⃗  ⃗ + 𝐴𝐵⃗⃗⃗⃗  ⃗ ∧ 𝑅(𝜏𝐵)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |
𝐿
0
0
∧ |

0
−𝐹
0
= |

0
0
−𝐹𝐿

 

3°/ On applique le PFS 

∑Rext→s⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0⃗   

∑Mext→s
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 0⃗  

Ainsi : 

X𝐴 = 0[N]
Y𝐴 = F[N]

N𝐴 = FL[Nm]
 

Il est maintenant possible de rechercher le torseur des actions intérieures : 

{𝜏𝑖𝑛𝑡}𝐺1,𝑅 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1,𝑅 = −{𝜏𝐴}𝐺1,𝑅 = {
0 0
−𝐹 0
0 −𝐹(𝐿 − 𝑥1)

}

𝐺1,𝑅

[N,Nm] 

Car : {𝜏𝐴}𝐺1,𝑅 = {
0 0
𝐹 0
0 𝐹(𝐿 − 𝑥1)

}

𝐴,𝑅

 

en effet  𝑀𝐺1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑀𝐴⃗⃗ ⃗⃗  ⃗ + 𝐺1𝐴⃗⃗⃗⃗ ⃗⃗  ⃗ ∧ 𝑅(𝜏𝐴)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = |
0
0
𝐹𝐿

+ |
−𝑥1
0
0
∧ |
0
𝐹
0
= |

0
0

𝐹𝐿 − 𝐹𝑥1

 

 b) En utilisant le torseur « aval » ou la partie « E2 » 

L’utilisation de cette partie de la poutre évite le calcul des efforts extérieurs en A : 

 

Ainsi : 

{𝜏𝑖𝑛𝑡}𝐺1,𝑅 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺1,𝑅 = {𝜏𝐵}𝐺1,𝑅 = {
0 0
−𝐹 0
0 −𝐹(𝐿 − 𝑥1)

}

𝐺1;𝑅

[N,Nm] 

 
c) Isoler la partie amont ou aval a mené au même résultat. Cependant, il est 
préférable de considérer le tronçon avec le moins d’inconnues et le moins de 
calcul.   

 

Question N°5 : Le diagramme pour l’effort tranchant selon y est : 

 

Le diagramme pour le moment fléchissant suivant z est : 

𝑥  

𝑦  

F 

𝑥1 

G1 

E2 

B A 

𝑥  

Mfz 

Ty 

-200 N 

B A 
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Question N°6 : 

 

Le point le plus sollicité est le point A. Il permettra d’identifier la section 
critique qui servira pour le dimensionnement. 

 

  Problème N°2 : Etude d’une presse à levier  

 

Une presse pneumatique (figure N°1) est un 
outil pouvant servir à différents travaux de 
montage/démontage (roulement, palier…) ou 
de marquage. Cette presse se compose d’un bâti 
①, d’un vérin pneumatique ②, d’une biellette 
③, d’un levier ④ et d’un jonc porte outils ⑤. 

 On se propose d’étudier le dimensionnement du 
levier ④ à partir de la modélisation présentée 
par la figure N°2. Le levier est en équilibre sous 
l’action d’une liaison pivot en A, d’un effort 
résultant de l’action de la biellette en B 
(équivalent à une liaison ponctuelle dont la 
normale est inclinée d’un angle α avec 
l’horizontale) et de l’effort exercé par le vérin en 
C. Les liaisons sont considérées sans jeu et sans 
frottement. 

 Figure N°1 : Vue de la presse 

 

Figure N°2 : Modélisation de la presse 

Les données du problème sont les suivantes (les distances sont en [mm] et les efforts en [kN]) : 

- AB⃗⃗⃗⃗  ⃗ = 100 x0⃗⃗⃗⃗  ⃗ - BC⃗⃗⃗⃗  ⃗ = 250 x0⃗⃗⃗⃗  - 𝐹𝑣é𝑟𝑖𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝑣é𝑟𝑖𝑛𝑦0⃗⃗⃗⃗  
 

Question N°1 : Déterminez les efforts de liaison au point A ainsi que la valeur de Fbiellette en 
fonction des données du problème. 

Question N°2 : Déterminez les composantes du torseur de section dans le levier en utilisant 
seulement l’expression du torseur « amont ».  

𝑥0⃗⃗⃗⃗  

𝑦0⃗⃗⃗⃗  

G1 A 

B 

Fvérin 

α 

① 
② 

③ 

④ 

⑤ 

Fbiellette 

C G2 
x1 

x2 

𝑥  

-200 Nm 

B 
A 
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Question N°3 : Tracer les variations du torseur de section le long de la poutre [ABC] pour 
Fvérin =785,4N et α=76,8°. 

Question N°4 : Quel est le point le plus sollicité de la poutre ? 

 

CORRECTION 

Question N°1 : Isolons l’ensemble de la poutre. Le BAME donne : 

{τA}A,R0 = {
XA 0
YA 0
0 0

}

A,R0

; {τB}B,R0 = {
−Fbiellette ∙ cos α 0
−Fbiellette ∙ sinα 0

0 0
}

B,R0

; {τC}C,R0 = {
0 0

Fvérin 0
0 0

}

C,R0

 

On déplace l’ensemble des torseurs au même point de réduction (ici en A, car plus grand nombre 
d’inconnues) : 

{τB}A,R0 = {

−Fbiellette ∙ cos α 0
−Fbiellette ∙ sin α 0

0 −0,1 ∙ Fbiellette ∙ sin α
}

A,R0

; {τC}A,R0 = {

0 0
Fvérin 0
0 0,35 ∙ Fvérin

}

A,R0

 

L’application du PFS donne : 

{
 
 

 
 XA − Fbiellette ∙ cos α = 0

YA − Fbiellette ∙ sin α + Fvérin = 0
0,35 ∙ Fvérin − 0,1 ∙ Fbiellette ∙ sinα = 0

→

{
 
 

 
 XA =

3,5 ∙ Fvérin
tan𝛼

YA = 2,5 ∙ Fvérin

Fbiellette =
3,5 ∙ Fvérin
sinα

 

Question N°2 : L’étude de la poutre se divise en deux parties : 

- Etude du tronçon ]AB[ : 

{𝜏𝑖𝑛𝑡}𝐺1,R0 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1,R0 = −{𝜏𝐴}𝐺1,R0 = {
−
3,5 ∙ Fvérin
tan𝛼

0

−2,5 ∙ Fvérin 0
0 𝑥1 ∙ 2,5 ∙ Fvérin

}

𝐺1,R0

 

- Etude du tronçon ]BC[ : 

{𝜏𝑖𝑛𝑡}𝐺2,R0 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺2,R0 = −({𝜏𝐴}𝐺2,R0+{𝜏𝐵}𝐺2,R0) 

Avec : 

{𝜏𝐴}𝐺2,R0 = {

3,5 ∙ Fvérin
tan𝛼

0

2,5 ∙ Fvérin 0
0 −𝑥2 ∙ 2,5 ∙ Fvérin

}

𝐺2,R0

 

Et : 

{𝜏𝐵}𝐺2,R0 = {
−
3,5 ∙ Fvérin
tan 𝛼

0

−3,5 ∙ Fvérin 0

0 (𝑥2 − 0,1)3,5 ∙ Fvérin

}

𝐺2,R0

 

 

Finalement : 
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{𝜏𝑖𝑛𝑡}𝐺2,R0 = {

0 0
Fvérin 0

0 Fvérin(0,35 − 𝑥2)
}

𝐺2,R0

 

Question N°3 : 

 

Question N°4 : Le point B est le plus sollicité. 

 

  Problème N°3 : Etude d’une plateforme volante 

Les plateformes volantes sont de plus en plus répandues à travers le monde. Au-delà de leur utilité 

déjà bien connue dans le domaine cinématographique elles ont aujourd’hui un avenir prometteur 

dans la livraison de colis postaux ou dans le secours à la personne. Le matériel présenté figure N°1 

pèse près de 1,5 kg et permet d’embarquer une charge utile de 4,5kg (figure N°2) pour une 

autonomie totale de vol allant jusqu’à 25 min.  

 
 

Figure N°1 : Plateforme volante de chez DJI® Figure N°2 : Plateforme avec charge 

Cet exercice propose d’étudier lors d’un vol stationnaire les efforts induits par une hélice sur le 

bras qui la relie au châssis. Un ensemble de mesures permet de donner les paramètres suivants : 

- Longueur du bras : 300mm 

- Diamètre du bras : 10mm 

- Effort de portance d’une hélice : 10N 
- Puissance d’un moteur : 60W à 12000 tr.min-1 

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  
A 

A 

A 

B 

B 

B 

C 

C 

C 

644,75N 

1963,5N 

785,4N 

196,35Nm 

Nx 

Ty 

Mfz 
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Question N°1 : Déterminez le couple induit par la rotation d’une hélice sur son bras de 
fixation. 

Question N°2 : Proposez (schémas, …) une modélisation poutre du problème.  

Question N°3 : Déterminez les composantes du torseur de section dans un bras de fixation et 
tracez leurs évolutions. 

Question N°4 : Quel est le point le plus sollicité de la poutre ? 

CORRECTION 

Question N°1 : On donne la formule suivante : 

P = C ∙ ω 

Donc : 

C =
P

ω
=

60 ∙ 30

π ∙ 12000
= 0,048Nm soit 48Nmm 

Question N°2 : 

 

 

Question N°3 : Etude du tronçon ]AB[ pour 0<x<L [mm] : 

{𝜏𝑖𝑛𝑡}𝐺,R0 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺,R0 = {𝜏𝐵}𝐺,R0 = {

0 0
𝐹𝑝𝑜𝑟𝑡 −𝐶𝑚𝑜𝑡
0 𝐹𝑝𝑜𝑟𝑡(𝐿 − 𝑥)

}

𝐺,R0

[N,Nmm] 

 

 

Question N°4 : Le point  le plus sollicité est le point A 

  

𝑥0⃗⃗⃗⃗  

𝑦0⃗⃗⃗⃗  

𝑧0⃗⃗  ⃗ 

x 

G 

L 

A B 

Fport 

Cmot 

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

A 

A 

A 

B 

B 

B 

Ty 

Mfy 

Mfz 

10N 

48Nmm 

3Nm 
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 Problème N°4 : Etude de l’arbre d’attaque d’un différentiel  

La figure ci-contre représente un différentiel à 
denture spiro-coniques. Cet ensemble mécanique 
équipe actuellement l’ensemble des véhicules 
routiers et leur permet de prendre un virage sans 
risque de dérapage. L’arbre d’attaque modélisé ci-
après est en équilibre sous l’action, en B et C des 
réactions exercées par les roulements, en E des 
efforts exercés par la roue sur le pignon et en D du 
couple moteur. Les cotes sont en [mm], les forces en 
[kN].   

Figure N°1 : Différentiel automobile 
 

 
Figure N°2 : Modélisation de l’arbre d’attaque 

En considérant la liaison induite par le roulement en C comme une liaison sphère/cylindre (liaison 

linéaire annulaire) et la liaison induite par le roulement B comme une liaison sphère /sphère 

(liaison rotule ou sphérique), répondre aux questions suivantes : 

Question N°1 : Calculez, dans le repère x0, y0, z0 et en réduisant le torseur en B, les 
composantes des réactions en B et C exercées par les roulements sur l’arbre 
(en kN) et le couple moteur en D (en Nm). 

Question N°2 : Déterminez les expressions des composantes du torseur de section le long de 
la poutre, tracez leurs variations et donnez le point le plus sollicité.  

 

  

𝑥0⃗⃗⃗⃗  

𝑦0⃗⃗⃗⃗  

𝑧0⃗⃗  ⃗ 

15 

10 

5 

A 

B C D 

E 

100 150 50 

Ø53 
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CORRECTION 

Question N°1 : Il convient, dans un premier temps de réaliser le BAME : 

{τE}E,R0 = {
10 0
15 0
5 0

}

𝐸,R0

; {τB}B,R0 = {
𝑋𝐵 0
𝑌𝐵 0
𝑍𝐵 0

}

B,R0

; {τC}C,R0 = {
0 0
𝑌𝐶 0
𝑍𝐶 0

}

C,R0

; {τD}D,R0 = {
0 𝐶𝑚
0 0
0 0

}

D,R0

 

 

On déplace l’ensemble des torseurs au point B, car c’est en ce point qu’il y a le plus grand nombre 
d’inconnues : 

{τE}𝐵,R0 = {
10 397,5
15 235
5 −1500

}

𝐵,R0

; {τC}B,R0 = {

0 0
𝑌𝐶 −150 ∙ 𝑍𝐶
𝑍𝐶 150 ∙ 𝑌𝐶

}

𝐵,R0

; {τD}B,R0 = {
0 𝐶𝑚
0 0
0 0

}

B,R0

 

 

L’application du PFS donne : 

{
 
 

 
 

10 + XB = 0
15 + YB + YC = 0
5 + ZB + ZC = 0
397,5 + Cm = 0
235 − 150 ∙ ZC = 0
−1500 + 150 ∙ YC = 0

→

{
 
 

 
 

XB = −10kN
YB = −25kN
ZB = −6,57kN
Cm = −397,5Nm
ZC = 1,57kN
YC = 10kN

 

 

Question N°2 : 

 

Il convient de réaliser l’étude de trois tronçons. 

 

- Tronçon ]AB[ pour 0<x1<100 [mm] : 

{𝜏𝑖𝑛𝑡}𝐺1,R1 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1,R1 = −{𝜏𝐸}𝐺1,R1 = {
−10 −397,5
−15 265 − 5 ∙ 𝑥1
−5 15 ∙ 𝑥1

}

𝐺1,R1

[kN,Nm] 

 

- Tronçon ]BC[ pour 100<x2<250 [mm] : 

{𝜏𝑖𝑛𝑡}𝐺2,R2 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺2,R2=[{𝜏𝐶}𝐺2,R2 + {𝜏𝐷}𝐺2,R2] = {

0 −397,5
10 −1,57 ∙ (250 − 𝑥2)
1,57 10 ∙ (250 − 𝑥2)

}

𝐺2,R2

[kN,Nm] 

 

- Tronçon ]CD[ pour 250<x3<300 [mm] : 

{𝜏𝑖𝑛𝑡}𝐺3,R3 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺3,R3={𝜏𝐷}𝐺3,R3 = {
0 −397,5
0 0
0 0

}

𝐺3,R3

[kn,Nm] 
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Diagrammes des sollicitations :  

 

 

Finalement, le point le plus sollicité est le point B. 
 

  Problème N°5 : Etude d’une potence de manutention  

Les potences de manutention (figure N°1) 

sont des structures métalliques qu’il est 

possible de retrouver dans de nombreux 

ateliers. Elles se composent d’un pilier de 

longueur l=4m (pièce ①) solidement arrimé 

au sol et d’un bras de longueur L=4m (pièce 

②) sur lequel sera fixé un palan (pièce ③).  

L’étude propose d’analyser les efforts 

induits sur le bras par une charge (notée F) 

appliquée à une distance (notée a) du pilier.  

 

On considère la modélisation suivante :   

 
Figure N°1 : Vue d’une potence de manutention 

① 

② ③ 

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

𝑥0⃗⃗⃗⃗  

Nx 

Ty 

Tz 

Mt 

Mfy 

Mfz 

10kN 

15kN 

5kN 

397,5Nm 

10kN 

1,57kN 

265Nm 

235Nm 

1500Nm 

A B C D 

A 

A 

A 

A 

A 

B 

B 

B 

B 

C 

C 

C 

C 

C 

B 

D 

D 

D 

D 

D 
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Figure N°2 : Modélisation complète de la potence de manutention 

Répondez dans l’ordre aux questions suivantes : 

Question N°1 : A l’aide du PFS, déterminez les actions de liaison au point C dans le repère (0 ; 
x0 ; y0). On considèrera que l’effort est placé en bout de poutre. 

Question N°2 : Déterminez les composantes du torseur de section le long de la poutre [CBA] 
en utilisant la méthode de votre choix. 

Question N°3 : Tracez l’évolution des composantes du torseur de cohésion. 

 

CORRECTION 

Question N°1 : Le PFS permet de donner le résultat suivant et ce en isolant l’ensemble de la 
poutre CBA : 

{𝜏𝐶}𝐶,𝑅0 = {
𝐹 0
0 0
0 −𝐹𝐿

}

𝐶,𝑅0

 

Question N°2 : Etude du tronçon] CB[: 

{𝜏𝑖𝑛𝑡}𝐺1,𝑅1 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺1,𝑅1 = {𝜏𝐴}𝐺1,𝑅1 = {
−𝐹 0
0 0
0 𝐹𝐿

}

𝐺1,𝑅1

[N,Nm] 

Etude du tronçon] BA[: 

{𝜏𝑖𝑛𝑡}𝐺2,𝑅2 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺2,𝑅2 = {𝜏𝐴}𝐺2,𝑅2 = {
0 0
𝐹 0
0 𝐹(𝐿 − 𝑥2)

}

𝐺2,𝑅2

[N,Nm] 

Question N°3 : Nx : 

 

 

 

 

 

𝑥0⃗⃗⃗⃗  

𝑦0⃗⃗⃗⃗  C 

B 

A 

F 

x1 

G1 

G2 

x2 

4m 

4m 

𝑥  A 

B C 

F 
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Ty : 

 

 

 

Mfz : 

 

 

 

  Problème N°6 : Etude d’une clé à pipe débouchée 

La clé à pipe est un outil à main couramment utilisé dans les ateliers de mécanique ou à la maison. 

Elle permet de serrer et desserrer des vis HC ou des écrous (cf. figure N°1).  

 

 

Figure N°1 : Vue d’un assemblage vissé Figure N°2 : Vue d’une clé à pipe lors de son utilisation 

On se propose d’étudier le comportement de cet outil lors de son utilisation. La vis est considérée 

comme complètement « grippée ». Pour en venir à bout, l’utilisateur se sert de tout son poids 

(90kg) en se suspendant à la clé.  Ses caractéristiques sont décrites en figure N°2 :  

Question N°1 : Dans quelle position vaut-il mieux placer la clé pour que l’efficacité du poids 
soit maximale ? A quel endroit de la clé vaut-il mieux appliquer la charge ? 

Question N°2 : Proposez (schémas, …) une modélisation poutre du problème. Quelles sont 
vos hypothèses ?  

Question N°3 : Déterminez les composantes du torseur de section dans chacun des éléments 
de poutres du système et tracez leurs évolutions. Quel est le point le plus 
sollicité ? 

Question N°4 : Quel sera alors la valeur du couple utile au desserrage de la vis ? 

95° 
45mm 

Ø15mm Ø25mm 

170 mm 

𝑥  

𝑥  

B 

B 

C 

C 

F 

FL 

A 

A 
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Correction 

 

Question N°1 : La clé doit être positionnée à l’horizontale 
afin que le bras de levier soit le plus grand possible. En 
effet, lorsque la clé est dans la position N°1, le bras de 
levier est donné par le segment [OA].  

Dans la position N°2, représentée en orange le bras de 
levier diminue. Il est ainsi donné par le segment [OB’]. Or 
OB’= OB.cosα.  

Cette dernière équation montre que le bras de levier 
maximum est atteint pour α=0. De la même façon, plus la 
charge est appliquée loin de l’écrou à desserrer plus le 
moment généré sur ce dernier sera important. Il convient 
alors d’appliquer l’effort en bout de clé.   

Question N°2 : Les hypothèses du problème sont : 

- Poutre de section constante. On néglige pour cela les variations de section le long de la 

clé.  

- La clé est considérée comme étant encastrée au niveau de la tête de vis.  

- La clé est parfaitement horizontale. 

- La charge est considérée comme ponctuelle et appliquée à l’extrémité de la clé (cas le 

plus défavorable). 

Remarque sur les limites du modèle poutre : 

- On ne traite pas ce qui est local. Ainsi : 

o On se place dans le cas théorique d’un écrou de hauteur nulle car on ne connait 

pas à priori le contact entre l’écrou et la clé. En effet quel que soit  la façon dont 

le contact s’opère entre l’écrou et la clé le torseur de section reste le même. 

Typiquement, si on suspend 100N au bout d’une corde, peu importe qu’il n’y 

est qu’un ou plusieurs nœuds au niveau du crochet. C’est toujours 100N qui 

« passent » dans la corde.  

o On ne s’intéresse pas au raccordement entre OA et AB. 

Ainsi, l’exercice peut être modélisé de la façon suivante dans le repère R(0 ; X⃗⃗⃗   ;  Y⃗⃗⃗   ;  Z⃗⃗  ) : 

 

Question N°3 : Il convient, dans une première partie de déterminer les actions de liaison au point 

O. Il s’agit ici d’un encastrement. Ainsi le torseur des actions mécaniques transmissibles s’écrit : 

F 

F 

α 

C 

O 

A B’ 

B 

x⃗  

y⃗  

O 

A 
B 

F = 900N 
95° 

170 mm 

45 mm 

X⃗⃗  

Y⃗⃗  

Z⃗  
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{τO}O,R = {

XO
YO
ZO

|

LO
MO

NO

}

O,R

 

De plus le torseur des actions mécaniques au point B s’écrit : 

{τB}B,R = {
0

−900
0

| 
0
0 
0
}

B,R

 

L’application du principe fondamental de la statique en résultante permet d’écrire : 

{

XO = 0           
YO − 900 = 0
ZO = 0             

 ⇒  {

XO = 0    
YO = 900
ZO = 0     

N 

Afin d’appliquer le PFS en moment, il convient à présent d’exprimer le torseur {τB} au point O : 

{τB}B,R = {
0

−900
0

| 
0
0 
0
}

B,R

⇒ {τB}O,R = {
0

−900
0

|
152460

0
−53820

}

O,R

 

En effet : 

M{τB}O
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = M{τB}B

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + OB⃗⃗⃗⃗  ⃗ ∧ R{τB}
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  0⃗ + |

45 + 170 ∙ cos 85
0

170 ∙ sin85
∧ |

0
−900
0

= |
152460

0
−53820

N.mm 

Ainsi, l’application du PFS en moment donne : 

{

LO + 152460 = 0
MO = 0                  
NO − 53820         

 ⇒  {

LO = −152460    
MO = 0                  
NO = 53820         

N.mm 

Finalement : 

{τO}O,R = {
0
900
0
|
−152460    
0                  
53820         

}

O,R

 

En représentant le système avec l’ensemble des efforts qui viennent d’être  déterminés, cela 

donne : 

 

Connaissant l’ensemble des efforts dans la structure, il est maintenant possible de calculer le 

torseur de cohésion (torseur des actions intérieures) pour chacun des tronçons.  

Ainsi pour le tronçon [OA] avec 0<x<45mm :  

-900N 

Z⃗  

Y⃗⃗  

X⃗⃗  

900N 

53820 Nmm 

-152460 Nmm 

O 

A 

B 
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{τint}G,R1 = −{τExt→E1}G,R1
 

De plus : 

{τExt→E1}G,R1
= {τO}G,R1 

Ainsi en exprimant le torseur {τO} au point G, il vient : 

{τ0}G,R1 = {
0
900
0
| 
−152460    
0                  

53820 − 900x  
}

G,R1

 

En effet : 

M{τO}G
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = M{τO}O

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + GO⃗⃗⃗⃗  ⃗ ∧ R{τO}
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =  |

−152460    
0                  
53820         

+ |
−x
0
0
 ∧ |

0
900
0

= |
−152460

0
53820 − 900x

N.mm 

Finalement : 

{τint}G,R1 = {
0

−900
0

| 
152460

0
−53820 + 900x

}

G,R1

 

Pour le tronçon [AB] avec 0<x<170mm : 

{τint}G,R2 = {τExt→E2}G,R2
 

De plus : 

{τExt→E2}G,R2
= {τB}G,R2 

Ainsi en exprimant le torseur {τB} au point G, il 

vient : 

{τB}G,R2 = {
0

−900
0

| 
0
0 

−153000 + 900x

}

G,R2

 

En effet : 

M{τB}G
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = M{τB}B

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + GB⃗⃗⃗⃗  ⃗ ∧ R{τB}
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  0⃗ + |

170 − x
0
0

∧ |
0

−900
0

= |
0
0

−153000 + 900x
N.mm 

Finalement : 

{τint}G,R2 = {
0

−900
0

| 
0
0 

−153000 + 900x
}

G,R2

 

La représentation des différentes sollicitations dans chacun des tronçons donne : 

 Pour l’effort tranchant TY : 

 

 Pour le moment de torsion MT : 

 

 

x1⃗⃗  ⃗ y⃗ 1 

z 1 

A 

O 

x 

-152460 Nmm 

53820 Nmm 

900N 

x⃗ 2 

y⃗ 2 

B 
x 

-900 N 

G 

G 

E1 E2 

-900 N 

-900 N 

x⃗  

x⃗  

y⃗  

y⃗  

152,46 Nm 

A 

B 

O 
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 Pour le moment fléchissant MfZ : 

 

Question N°4 : Le couple utile au desserrage de la vis sera de 152,46 Nm. 

Remarque : Il est possible de constater que l’ensemble du moment fléchissant généré sur [AB] 

n’est pas transformé en moment de torsion utile à desserrer la vis. Cela est dû à l’angle (>90°) 

formé entre la jonction des deux poutres. Cet angle permet notamment d’éloigner la main de 

l’opérateur de l’ensemble à démonter.  

 

 Problème N°7 : Etude d’un lit pour chat-pacha   

Le chat est un animal dont la domestication a débuté en 

9800 avant notre ère. Aujourd’hui encore le chat reste un 

animal très indépendant qui demande quand même un 

« minimum » d’attention, à savoir : 

- De la nourriture de qualité 

- Beaucoup de caresses 

- Un fil pour jouer  

- Un endroit chaud  

- Un lit dans lequel passer beaucoup de temps. 

 

On se propose de dimensionner la structure de ce dernier système. Etant donné la présence d’une 

symétrie, on se rapporte à la modélisation suivante : 

 
Figure N°1 : Vue d’un support pour chat 

y⃗  
x⃗  

A 
B 

O 

x⃗  

x⃗  

y⃗  

y⃗  

A 

O 

B 
0 Nm 

-53,82 Nm 

-153 Nm 

-13,32 Nm 
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Figure N°2 : Modélisation du support pour chat 

Les données du problème sont les suivantes (attention les efforts sont exprimés en N) : 

- Fchat⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 60 x⃗  - ‖AB⃗⃗⃗⃗  ⃗‖ = 400 mm - ‖BC⃗⃗⃗⃗  ⃗‖ = 350 mm 

- ‖CD⃗⃗⃗⃗  ⃗‖ = 300 mm  

Les liaisons en A (pivot) et en B (ponctuelle) sont supposées parfaites et sans jeu. L’effort en D 

(Fchat) est induit par la moitié du poids de l’animal. 

Répondez dans l’ordre aux questions suivantes :  

Question N°1 : En appliquant le principe fondamental de la statique, déterminez les actions 
des liaisons aux points A et B. 

Question N°2 : Calculez les composantes des torseurs de cohésion le long de la poutre ABCD 
et tracez leurs variations. 

Question N°3 : Quel est le point le plus sollicité ? 
 

CORRECTION 

Question N°1 : Il convient, dans un premier temps de réaliser le BAME : 

{τA}A,R0 = {

𝑋𝐴 𝐿𝐴
𝑌𝐴 𝑀𝐴
𝑍𝐴 0

}

𝐴,R0

; {τB}B,R0 = {
0 0
𝑌𝐵 0
0 0

}

B,R0

; {τD}𝐷,R0 = {
𝐹𝐶ℎ𝑎𝑡 0
0 0
0 0

}

D,R0

 

On déplace l’ensemble des torseurs au point A, car c’est en ce point qu’il y a le plus grand nombre 
d’inconnues : 

{τB}𝐴,R0 = {
0 0
𝑌𝐵 0
0 0,4 ∙ 𝑌𝐵

}

𝐴,R0

; {τD}A,R0 = {

𝐹𝑐ℎ𝑎𝑡 0
0 −0,3 ∙ 𝐹𝑐ℎ𝑎𝑡
0 −0,35 ∙ 𝐹𝑐ℎ𝑎𝑡

}

𝐴,R0

 

L’application du PFS donne : 

A 

B 

C 

D 

Fchat  
G1 

G2 

G3 

x1⃗⃗  ⃗ 

x2⃗⃗  ⃗ 

x3⃗⃗  ⃗ 

y1⃗⃗  ⃗ 

y2⃗⃗  ⃗ 

y3⃗⃗  ⃗ 

𝑧2⃗⃗  ⃗ 

𝑧1⃗⃗  ⃗ 

𝑧3⃗⃗  ⃗ 

𝑧  

𝑦  

𝑥  

X1 

X2 

X3 
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{
 
 

 
 

𝑋𝐴 + 𝐹𝑐ℎ𝑎𝑡 = 0
𝑌𝐴 + 𝑌𝐵 = 0
𝑍𝐴 = 0
𝐿𝐴 = 0

𝑀𝐴 − 0,3 ∙ 𝐹𝑐ℎ𝑎𝑡 = 0
0,4 ∙ 𝑌𝐵 − 0,35 ∙ 𝐹𝑐ℎ𝑎𝑡 = 0

→

{
 
 
 

 
 
 

XA = −60 N
YA = −52,5 N
ZA = 0 N
LA = 0 Nm

MA = 0,3 ∙ Fchat = 18 Nm

YB =
0,35 ∙ Fchat

0,4
= 52,5 N

 

Question N°2 : Il convient de réaliser l’étude de trois tronçons. 

- Tronçon ]AB[ pour 0<x1<0,4 [m] : 

{𝜏𝑖𝑛𝑡}𝐺1,R1 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1,R1 = −{𝜏𝐴}𝐺1,R1 = {
60 0
52,5 −18
0 −52,5 ∙ 𝑥1

}

𝐺1,R1

 

- Tronçon ]BC[ pour 0<x2<0,35 [m] : 

{𝜏𝑖𝑛𝑡}𝐺2,R2 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺2,R2= = {𝜏𝐷}𝐺2,R2 = {
0 −18
−60 0
0 60 ∙ (𝑥2 − 0,35)

}

𝐺2,R2

 

- Tronçon ]CD[ pour 0<x3<0,33 [m] : 

{𝜏𝑖𝑛𝑡}𝐺3,R3 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺3,R3={𝜏𝐷}𝐺3,R3 = {
0 0
−60 0
0 60 ∙ (𝑥3 − 0,3)

}

𝐺3,R3

 

Les variations des différents torseurs de section donnent : 

 

B 

B C 

C 

C 

C D 

D 

D 

D 

60N 

60N 

52,5N 

18Nm 

18Nm 

18Nm 21Nm 

𝑥  

𝑥  

𝑥  

𝑥  

𝑥  

Mt 

Mfy 

Mfz 

Ty 

Nx 

A 

B 
C D 

A 

A 

A 

A 

B 

B 
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Question N°3 : Le point B semble être le plus sollicité 

 

  Problème N°8 : Etude d’une fraiseuse de table 

Une fraiseuse de table est une machine 

outils (cf. figure N°1) permettant de réaliser 

des travaux de fraisage/perçage dans des 

matériaux légers tels que l’aluminium, le 

plastique ou le bois. D’une manière 

générale, la puissance disponible à la broche 

de ces machines n’excède pas 1kW. Ce 

facteur est très limitant sur sa capabilité 

(profondeur de passe, …). On se propose 

d’étudier l’architecture en « col de cygne » 

de ce type de fraiseuse. Pour ce faire nous 

retiendrons la modélisation suivante : 

 

Caractéristiques géométriques de la machine : 

- ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ = 150 mm 

- ‖𝐵𝐶⃗⃗⃗⃗  ⃗‖ = 250 mm 

- ‖𝐶𝐷⃗⃗⃗⃗  ⃗‖ = 400 mm 

 
Capabilité maximale de la machine (en N): 

- FA⃗⃗ ⃗⃗ = −200 z0⃗⃗  ⃗ 

- FC⃗⃗⃗⃗ = 150 y0⃗⃗⃗⃗  

- FP⃗⃗⃗⃗ = 300 x0⃗⃗⃗⃗  
 

Capabilité maximale de la machine (en Nm) : 

- C⃗ = 40 x1⃗⃗  ⃗ 
 

Figure N°2 : Modélisation du col de cygne   

Répondez aux questions suivantes :  

Question N°1 : Déterminez les composantes du torseur de section le long de la poutre [ABCD] 
et ce, sans résoudre le problème de statique. 

Question N°2 : Tracez l’évolution des composantes du torseur de section le long de la poutre 
[ABCD]. 

CORRECTION 

Question N°1 : Exprimons le torseur en A dans les différents repères : 

{τA}A,R1 = {
300 40
150 0
−200 0

}

𝐴,R1

; {τA}A,R2 = {
200 0
150 0
300 40

}

A,R2

; {τA}A,R3 = {
−300 −40
150 0
200 0

}

A,R3

 

 

Figure N°1 : Vue d’une fraiseuse de table OPTIMUM® 

𝑥0⃗⃗⃗⃗  

𝑦0⃗⃗⃗⃗  

𝑧0⃗⃗  ⃗ 

𝑧1⃗⃗  ⃗ 

𝑦1⃗⃗  ⃗ 

𝑥1⃗⃗  ⃗ 

𝑥2⃗⃗⃗⃗  

𝑦2⃗⃗⃗⃗  

𝑧2⃗⃗  ⃗ 

𝑥3⃗⃗⃗⃗  

𝑧3⃗⃗  ⃗ 𝑦3⃗⃗⃗⃗  
A 

B 

C 

D 

G1 

G2 

G3 

FC 

FA 

FP 

C 
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L’étude des différents tronçons donne : 

- Tronçon ]AB[ pour 0<x1<0,15 [m] : 

{𝜏𝑖𝑛𝑡}𝐺1,R1 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1,R1 = −{𝜏𝐴}𝐺1,R1 = {
−300 −40
−150 200 ∙ 𝑥1
200 150 ∙ 𝑥1

}

𝐺1,R1

 

- Tronçon ]BC[ pour 0<x2<0,25 [m] : 

{𝜏𝑖𝑛𝑡}𝐺2,R2 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺2,R2= = −{𝜏𝐴}𝐺2,R2 = {
−200 −22,5
−150 30 − 300 ∙ 𝑥2
−300 −40 + 150 ∙ 𝑥2

}

𝐺2,R2

 

- Tronçon ]CD[ pour 0<x3<0,4 [m] : 

{𝜏𝑖𝑛𝑡}𝐺3,R3 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺3,R3=−{𝜏𝐴}𝐺3,R3 = {

300 40 − 37,5
−150 −75 + 200 ∙ (0,15 − 𝑥3)

−200 −150 ∙ (0,15 − 𝑥3)
}

𝐺3,R3

 

 

Question N°2 : Les variations sont : 

 

𝑥  

𝑥  

𝑥  

𝑥  

𝑥  

Nx 

Ty 

Tz 

Mfy 

Mt 

Mfz 

A 

A 

A 

A 

A 

A 
B 

B 

B 

B 

B 

B 

C 

C 

C 

C 

C 

C D 

D 

D 

D 

D 

D 

300N 

300N 

200N 

150N 

200N 

200N 
300N 

40Nm 
22,5Nm 

2,5Nm 

30Nm 

45Nm 

125Nm 22,5Nm 

40Nm 

37,5Nm 

22,5Nm 

2,5Nm 
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 Problème N°9 : Mât de drapeau soumis au vent 

Un mât de drapeau est encastré à sa base et libre à l’extrémité. Lorsqu’il est exposé au vent, il subit 

une pression constante le long de sa longueur, modélisée comme une charge linéique uniforme q. 

L’objectif est d’analyser les efforts internes et les contraintes dans le mât avec une section 

circulaire. 

 

 

 

 

 

 

 

 

 

 

Les données du problème sont les suivantes : 

- Longueur du mât : 𝐿 = 5 m 

- Charge linéique due au vent : 𝑞 = 200 N/m 

- Section circulaire : 𝑑 = 0,1 m  

 

Question N°1 : Proposez un modèle simplifié du mât, précisez le repère et la direction de la 
charge. 

Question N°2 : Déterminez le torseur de cohésion.  

Question N°3 : Tracez l’évolution des composantes du torseur de section le long de la poutre 
et donnez le point le plus sollicité. 

 

CORRECTION 

Question N°1 : Soit la modélisation retenue pour l’étude du gousset : 
 

 
 

 

Figure N°1 : Exemple devant l’ONU 

A G 
x 

L 

𝑥  

𝑦  

q 
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Question N°2 : Etude de la section sur] AB[:  

{𝜏𝑖𝑛𝑡}𝐺,𝑅 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺,𝑅
= {𝜏𝐵}𝐺,𝑅 = {

0 0
−𝑞(𝐿 − 𝑥) 0

0
−𝑞(𝐿 − 𝑥)2

2

}

𝐺,𝑅

 

Question N°3 : Le diagramme pour l’effort tranchant selon y est : 

 

 

 

 

 

 

 

 

 

Le point le plus sollicité est le point A (base du bâti)  

 

 

 

𝑥  

Ty 

A B 

1000 N 

𝑥  

𝑀𝑓𝑧  

A 

B 

2500 Nm 
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Sollicitation élémentaire : 

Traction/compression – concentration de 

contrainte 
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 Problème N°10 : Tir à la corde 

Discipline olympique de 1900 à 1920, le tir à la corde (figure N°1) oppose deux équipes dans une 

épreuve de force. Chacune d’elle s'aligne aux extrémités d’une corde et essaye de faire dépasser à 

l'autre une ligne ou de faire chuter l'adversaire. 

 
Figure N°1 : Exemple de tir à la corde 

Le problème comportant un plan de symétrie, on se ramène à la modélisation de la figure 2. Avec 

(les distances sont en [m] et les efforts en [kN]) : 

- L = 1m - ‖𝐹1⃗⃗  ⃗‖ = 1  - ‖𝐹2⃗⃗⃗⃗ ‖ = 1,5  - ‖𝐹3⃗⃗⃗⃗ ‖ = 2,5 
 

  

 

 

 

 

Figure N°2 : Modélisation plane du problème 

Répondez dans l’ordre aux questions suivantes :  

Question N°1 : Déterminez les composantes du torseur de section le long de la poutre ]ABCD[ 
et ce, sans résoudre le problème de statique. 

Question N°2 : Tracez l’évolution des composantes du torseur de section le long de la poutre 
]ABCD[ et donnez le tronçon le plus sollicité.  

Question N°3 :  Déterminez la contrainte de traction dans la partie la plus sollicitée de la 
corde. Pour ce faire, cette dernière sera assimilée à un cylindre de diamètre 
D=30mm.  

Question N°4 : On souhaite un coefficient de sécurité s = 4. Conclure quant au bon 
dimensionnement de la corde si la limite d’élasticité du matériau la 
constituant est de Re = 40MPa.  

Question N°5 : Déterminez l’allongement relatif (notée ε [μdef]) du tronçon étudié aux 
questions N°3 et N°4 (E = 2GPa) et sa longueur après déformation (notée Lf 
[mm]). 

 

 

𝑥0⃗⃗⃗⃗  

𝑦0⃗⃗⃗⃗  

A B C D F1 F2 F3 

L L L 
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CORRECTION 

Question N°1 : L’étude des différents tronçons donne : 

- Tronçon ]AB[ pour 0 < 𝑥1 < 𝐿 [m] : 

{𝜏𝑖𝑛𝑡}𝐺1 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺1 = {𝜏𝐵}𝐺1 + {𝜏𝐶}𝐺1 + {𝜏𝐷}𝐺1 = {
𝐹1 + 𝐹2 + 𝐹3 0

0 0
0 0

}

𝐺1

= {
5 0
0 0
0 0

}

𝐺1

  

- Tronçon ]BC[ pour 𝐿 < 𝑥2 < 2𝐿 [m] : 

{𝜏𝑖𝑛𝑡}𝐺2 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺2 = {𝜏𝐶}𝐺2 + {𝜏𝐷}𝐺2 = {
𝐹2 + 𝐹3 0
0 0
0 0

}

𝐺2

= {
4 0
0 0
0 0

}

𝐺2

 

- Tronçon ]CD[ pour 2𝐿 < 𝑥3 < 3𝐿 [m] : 

{𝜏𝑖𝑛𝑡}𝐺3 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺3 = {𝜏𝐷}𝐺3 = {
𝐹3 0
0 0
0 0

}

𝐺3

= {
2,5 0
0 0
0 0

}

𝐺3

  

 

Question N°2 : Les variations sont : 

 

Le tronçon AB est le plus sollicité. 

Question N°3 : Le tronçon AB étant le plus sollicité, la contrainte de traction maximale est : 

𝜎traction𝐴𝐵 =
𝑁𝑥
𝑆
=  

𝑁𝑥
𝜋 ∙ 𝐷2 
4

=
4 𝑁𝑥
𝜋 . 𝐷2

=
4 × 5 × 103

𝜋 × 302
=   7,07  𝑀𝑃𝑎 

Question N°4 :  
Comme σtractionAB = 7,07  MPa <  

Re

s
= 

40

4
= 10 MPa, la corde est donc 

correctement dimensionnée.  

Question N°5 : 
 
 
 
 
 
 
 
 

- Pour déterminer l’allongement relatif 𝜀, on utilise la loi de Hooke 𝜎 = 𝐸𝜀. 
On obtient :  

𝜀 =  
𝜎

𝐸
=  

7,07

2 × 103
≈ 0,004 

 
- Pour déterminer la longueur après déformation 𝐿𝑓 , on exploite les deux 

relations 𝐿𝑓 = 𝐿 + ∆𝐿 et 𝜀 =  
∆𝐿

𝐿
. On obtient :   

𝐿𝑓 = 𝐿 +  𝜀𝐿 = (1 + 𝜀)𝐿 = (1 + 0,004)1 = 1,004 m 

 

 

 

 

𝑥  

Nx 

A B C D 

5 kN 

4 kN 

2,5 kN 
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  Problème N°11 : Mise aux normes d’un système de levage 

On se propose de mettre à la norme une biellette équipant une pince de levage (figure N°1). Pour 

se faire on colle une jauge de déformation en son centre (figure N°2) et on réalise un essai de 

levage dans le cas d’utilisation le plus défavorable (pleine charge bras complètement ouvert). 

 

 
 

 

Figure N°1 : Pince de levage Figure N°2 : Vue de la biellette instrumentée 

Lors de la mise en charge du système on relève une déformation de la biellette de 700 μdef.  

Afin d’exploiter les résultats précédents on réalise en parallèle un essai de traction sur le matériau 

composant cette biellette. La courbe suivante donne le résultat de ce test : 

 

Figure N°3 : Courbe de traction d’un XC48 

Charge unitaire 127.4 MPa 

Déformation 220x10-5 

Biellette 

Biellette 

Jauge 

Anneau de 

levage 

Mors de 

serrage 

Bras inférieur 
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Répondez dans l’ordre aux questions suivantes : 

Question N°1 :  A l’aide de la courbe de traction de la figure N°3, donnez la limite d’élasticité 
du matériau, la résistance mécanique à la ruputre ainsi que son module de 
Young.  

Question N°2 : A partir des résultats donnés par la jauge, déterminez la contrainte au sein de 
la biellette.  

Question N°3 : Déterminez le coefficient de sécurité de la biellette si l’on considère la limite 
à rupture ou la limite d’élasticité. A votre avis quel est le cas à retenir ? 

Une étude statique permet de déterminer les efforts aux liaisons de la biellette avec ses points 

d’ancrage. Les résultats sont les suivants :  

 

Figure N°4 : Résultats de l’étude statique 
 

Question N°4 :  Vérifiez la cohérence entre les études analytiques et expérimentales. 
Expliquez les écarts éventuels.  

Question N°5 : Sachant que la rénovation de la norme impose un coefficient de sécurité de 4 
pour les systèmes de levage, déterminez la nouvelle section de la biellette tout 

en respectant le rapport (
𝐿

𝑙
= 5) initial.  

 

CORRECTION 

Question N°1 : D’après la courbe de traction on donne : 

- Re = 462 MPa (limite élastique du matériau) 
- Rm = 733 MPa (résistance mécanique à la rupture) 
- E = 210 GPa  (module de Young) 

On remarque que le module de Young est cohérent avec le matériau utilisé. 

Question N°2 : On donne la formule suivante (loi de Hooke) : 

𝜎 = 𝐸 ∙ 𝜀𝑥𝑥 

Or, l’expérience permet de mesurer la valeur de la déformation. Ainsi 
εxx=700.10-6def. De plus la courbe de traction a permis de caractériser le 
module de Young du matériaux (E=210GPa). L’instrumentation de la bielle est 
donc inutile si l’on ne connait pas les caractéristiques matériaux. Finalement : 

𝜎 = 700 ∙ 10−6 ∙ 210 ∙ 103 = 147𝑀𝑃𝑎 

Question N°3 : Le coefficient de sécurité actuel est de : 

- Si l’on considère Re : 3  
- Si l’on considère Rm : 5 

Question N°4 : On donne la formule suivante : 

𝑥  

𝑦  

A 

B 75kN 

75kN 
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𝜎 =
𝑁𝑥
𝑆

 

Il convient de rechercher le terme « Nx – effort normal ». Pour ce faire utilisons 
le torseur de section. A partir de l’étude statique on peut écrire : 

{𝜏𝑖𝑛𝑡}𝐺1,𝑅 = −{𝜏𝑒𝑥𝑡→𝐸1}𝐺1,𝑅 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺1,𝑅 = −{𝜏𝐴}𝐺1,𝑅 = {
75000 0
0 0
0 0

}

𝐺1,𝑅

 

Ainsi : 

𝜎 =
75000

50 ∙ 10
= 150𝑀𝑃𝑎 

On remarque que le résultat est très proche de l’expérience. La différence peut 
s’expliquer par la direction de collage de la jauge qui n’est peut-être pas 
coïncident avec l’axe de chargement, les incertitudes de mesure qui s’ajoutent 
(mesure lors de l’essai de traction, mesure in-situ,…). 

Question N°5 : On donne la formule suivante : 

𝜎 =
𝑅𝑒
𝑠𝑒𝑐𝑢

=
𝑁𝑥
𝑆

 

Or : 

𝑆 = 𝐿 ∙ 𝑙 = 5𝑙 ∙ 𝑙 = 5𝑙2 

Ainsi : 

𝑙 = √
𝑁𝑥 ∙ 𝑠𝑒𝑐𝑢

𝑅𝑒 ∙ 5
= 11,4𝑚𝑚 𝑒𝑡 𝐿 = 57𝑚𝑚 
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  Problème N°12 : Etude de la résistance d’un câble d’ascenseur 

Les premiers ascenseurs sont apparus dès le XVème siècle. Ce mécanisme trouva très vite son 

utilité dans les mines. Toutefois, les accidents provoqués par la fatigue des câbles étaient très 

courants et ont très largement limité l’expansion de ces machines. On doit à Elisha OTIS l’invention 

du premier frein à déclenchement automatique qui permettait de stopper la cabine en cas de 

rupture des liens.  

On se propose dans cet exercice de comparer l’influence de l’accélération sur le dimensionnement 

d’un câble d’ascenseur. Pour cela, on souhaite lever une charge de 1500kg à une vitesse de 5m.s-1. 

La cabine atteint sa vitesse maximale au bout de 1,3 secondes. Le coefficient de sécurité adopté 

est de s=12. 

Les fournisseurs de câbles donnent les informations suivantes :  

 

Figure N°1 : Caractéristiques des câbles métalliques 
 

Question N°1 :  Déterminez la section d’un câble permettant d’assurer la sécurité des usagers 
lorsque l’ascenseur se déplace à 5m.s-1.  

Question N°2 : Déterminez l’accélération de la cabine. 

Question N°3 : Déterminez la charge sur le câble liée à l’accélération de la cabine. Quel est 
alors le câble qu’il convient d’installer ?  

Remarque 1 : Le système de traction d’un ascenseur comporte plusieurs câbles. Chacun d’entre 

eux doit pouvoir supporter la charge totale. Ainsi, si un lien vient à rompre, les autres permettent 

d’assurer la sécurité des usagers. Cette règle est toutefois spécifique au transport des personnes.  

Remarque N°2 : Rappels sur les câbles 

 
Figure N°2 : Nomenclature d’un câble (source : LEVAC) 
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CORRECTION 

Question N°1 : A vitesse constante seul le poids agit sur le câble. Ainsi : 

- Charge sur le câble : 1500kg 
- Limite d’élasticité du câble : 180kg/mm² soit 1800 MPa 
- Coefficient de sécurité adopté : 12 

Le câble est soumis à de la traction pure ainsi : 

𝜎𝑒
𝑠
=

𝑁𝑥
𝑆𝑐â𝑏𝑙𝑒

 𝑎𝑣𝑒𝑐  𝑆𝑐â𝑏𝑙𝑒 =
𝜋 ∙ 𝑑𝑐â𝑏𝑙𝑒

2  

4
 

Par conséquent : 

𝑑𝑐â𝑏𝑙𝑒 = √
𝑁𝑥 ∙ 𝑠 ∙ 4

𝜎𝑒 ∙ 𝜋
= √

1500 ∙ 10 ∙ 12 ∙ 4

1800 ∙ 𝜋
= 11,2𝑚𝑚 

Il convient alors de sélectionner un câble dont le diamètre est de 12mm 

Question N°2 : La commande de déplacement de la cabine obéît à une loi de type 
« trapèze ».  Ainsi : 

 

L’accélération de la cabine est donc de : 

𝑎 =
𝑣

𝑡
=

5

1,3
= 3,85 𝑚 ∙ 𝑠−2 

 

Question N°3 : D’après le principe fondamental de la dynamique, la charge sur le câble 
devient : 

𝑁𝑥−𝑎𝑐𝑐 = 1500 ∙ 10 + 1500 ∙ 3,85 = 20775𝑁 

Ainsi : 

𝑑𝑐â𝑏𝑙𝑒 = √
𝑁𝑥 ∙ 𝑠 ∙ 4

𝜎𝑒 ∙ 𝜋
= √

20775 ∙ 12 ∙ 4

1800 ∙ 𝜋
= 13,3𝑚𝑚 

Il convient alors de sélectionner un câble dont le diamètre est de 15mm 

Soit une contrainte dans le câble de 117,6MPa. Le coefficient de sécurité est 
donc de 15,3. 

Temps [sec] 

Vitesse [m.s-1] 

1,3 

5 
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  Problème N°13 : Etude d’une pale d’hélicoptère (Annale ENS Cachan) 

On se propose d'étudier au travers de 

cet exercice l’influence des effets 

d’inertie sur le dimensionnement d’une 

pièce mécanique. Ainsi nous 

considérons une pale d'hélicoptère en 

rotation uniforme autour d'un axe fixe. 

La modélisation retenue est une poutre 

encastrée-libre de section constante S, 

de longueur L et de masse volumique ρ. 

Elle tourne à une vitesse de rotation ω. Les effets d'inertie se traduisent par une charge répartie 

f (t) = ρSω2(t + a)x⃗  dans la direction de la poutre (figure N°2). Avec t l'abscisse variant de 0 à L 

d'un point quelconque de cette dernière.  

 

Figure N°2 : Modélisation de la pale d’hélicoptère 
 

 

 Question N°1 :  Exprimez le torseur de cohésion le long de la pale et calculez l’expression 
de la contrainte de traction en fonction des données du problème.   

Question N°2 : Exprimez la contrainte de traction maximale dans la pale.  

Question N°3 : La pale tourne à la vitesse de 200 radians par seconde. Sa longueur vaut 3 
m. La longueur « a » vaut 0,1m. On considère un coefficient de sécurité s=1. 
Choisissez parmi les 3 matériaux suivants celui qui pourrait être utilisé 
pour réaliser la pale : l'acier (ρacier=7800 kg.m−3, Reacier=450 MPa), le titane 
(ρtitane=4500 kg.m−3, Retitane=1200 MPa) et un alliage d’aluminium 
(ρalu=2700 kg.m−3, Realu=270 MPa).  

CORRECTION 

Question N°1 : Il convient de réaliser une coupure le long de la poutre afin d’obtenir le 
torseur de section. Ainsi : 

{𝜏𝑖𝑛𝑡}𝐺1 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺1 =

{
 
 

 
 
∫ 𝑓(𝑡)𝑑𝑡

𝑡=𝐿

𝑡=𝑥

0

0 0
0 0}

 
 

 
 

𝐺1

 

Avec : 

∫ f(t)dt 

t=L

t=x

= ∫ ρSω2(t + a)dt 

t=L

t=x

= ρSω2 ∙ [
𝑡2

2
+ 𝑎𝑡]

𝑡=𝑥

𝑡=𝐿

 

Finalement 

 
Figure N°1 : Vue d’un hélicoptère 

𝐟 (𝐭) = 𝛒𝐒𝛚𝟐(𝐭 + 𝐚)𝐱⃗  

x⃗  

y⃗  

L 

x G1 
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𝑁𝑥 = ρSω
2 ∙ (

𝐿2 − 𝑥2

2
+ 𝑎(𝐿 − 𝑥))) 

L’expression de la contrainte de traction est donc : 

𝜎 =
𝑁𝑥
𝑆
= ρω2 ∙ (

𝐿2 − 𝑥2

2
+ 𝑎(𝐿 − 𝑥))) 

Question N°2 : La contrainte maximale de traction se trouve au niveau de l’encastrement. 
Ainsi : 

𝜎𝑚𝑎𝑥 = ρω
2 ∙ (

𝐿2

2
+ 𝑎𝐿) 

Question N°3 : Pour l’acier : σpale = 1497,6 MPa ne peut convenir pour l’application car la 
contrainte max dans la pale est supérieure à la limite d’élasticité. 

Pour le titane : σpale = 864 MPa peut convenir à l’application car la contrainte 
max dans la pale est inférieure à la limite d’élasticité. 

Pour l’aluminium : σpale = 518,4 MPa ne peut convenir pour l’application car la 
contrainte max dans la pale est supérieure à la limite d’élasticité. 

On sélectionne donc, le titane.  

 

 Problème N°14 : Etude d’une vis fusible  

On se propose de dimensionner une vis fusible. Cette dernière doit rompre en cas de surcharge 

afin de protéger les biens et les personnes. Pour ce faire, on considère les données suivantes : 

- Diamètre à fond de filet de la vis : D = 22mm 
- Longueur de la vis : L = 150mm 
- Résistance d’élasticité du matériau composant la vis :  Re = 640MPa 
- Résistance à rupture du matériau constituant la vis :  Rm = 800MPa 
- Charge d’épreuve max : F = 14 000daN  

On considère la modélisation N°1 de la vis (figure N°1) : 

 

 
 

Figure N°1 : Vis sans gorge de rupture 

 

Répondez dans l’ordre aux questions suivantes :  

Question 1 : Déterminez les composantes du torseur de section le long de la vis ]AB[. 
Question 2 : A quel type de contrainte est soumise la vis ? Calculez la valeur de cette 

contrainte et tracez sa répartition sur une section de la vis.  
Question 3 : La vis casse t’elle sous l’action de la charge d’épreuve ?  
Question 4 : Déterminez l’allongement de la vis. Quelle sera sa longueur finale après 

déformation ?  

𝑦  

x⃗  

D 

F F 

A B 

L 
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Pour répondre à la problématique posée, on se propose de réaliser une gorge (R = 2mm et d = 

18mm) sur la partie cylindrique de la vis (figure N°2) :  

 

 
 

Figure N°2 : vis avec gorge de rupture 
Répondez dans l’ordre aux questions suivantes : 

Question 5 : Déterminez, à l’aide de l’abaque (figure N°3) le coefficient de concentration de 
contrainte (noté Kt) relatif à la singularité géométrique présente sur la vis.  

Question 6 : Déterminez alors la contrainte maximale et vérifier le bon fonctionnement de 
la vis fusible.  

Question 7 : Pourquoi est-il important de réaliser la gorge au loin des points d’application 
des efforts (tête de la vis et écrou en B) ?  

 

CORRECTION 

Question N°1 : Il convient de réaliser une coupure le long de la poutre afin d’obtenir le 
torseur de section. Ainsi : 

{𝜏𝑖𝑛𝑡}𝐺,𝑅 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺,𝑅 = {𝜏𝐵}𝐺,𝑅 

On déplace le torseur {𝜏𝐵} et on l’exprime au point G : 

{τ𝐵}𝐵 = {
𝐹 0
0 0
0 0

}

𝐵,𝑅

 →  {τ𝐵}𝐺 = {
𝐹 0
0 0
0 0

}

𝐺,𝑅

  

On obtient donc le torseur de cohésion sur la poutre ]AB[ : 0<x<L  

{𝜏𝑖𝑛𝑡}𝐺,𝑅 = {
𝐹 0
0 0
0 0

}

𝐺,𝑅

[N,Nm] 

Question N°2 : La vis est soumise uniquement à une contrainte normale (effort normal) :  

𝜎normale = 𝜎traction =
𝑁

𝑆
= 

𝑁

𝜋 ∙ 𝐷2 
4

=
4 𝑁

𝜋 . 𝐷2
=
4 × 14000 × 10

𝜋 × 222
=   368,3  𝑀𝑃𝑎 

 

 

D 

F F 

𝑦  

R 

A B 

d 
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Question N°3 : - La contrainte maximale dans la vis est :  

𝜎max = 𝜎normale =   363,8  𝑀𝑃𝑎 

- La résistance à rupture est : 𝑅𝑚 = 800 𝑀𝑃𝑎 

Puisque 𝜎max < 𝑅𝑚, donc on en déduit que la vis ne casse pas.  

 

Question N°4 : - Pour l’allongement de la vis ∆𝐿 = 𝐿𝑓 − 𝐿 :  

 

On eploite les deux relations 𝜀 =  
∆𝐿

𝐿
 et 𝜎 = 𝐸 ∙ 𝜀 ∶  

 

∆𝐿 =  𝜀 × 𝐿 =
𝜎

𝐸
 × 𝐿 =  

368,3

210×103
 × 150 = 0,263 mm 

 
- La longueur finale après déformation 𝐿𝑓 ∶ 

𝐿𝑓 = 𝐿 + ∆𝐿 = 150 + 0,263 = 150,263 mm 

Question N°5: • 
𝑑

𝐷
= 

18

22
= 0,82 

• 
𝑟

𝑡
= 

2

2
= 1  (avec 2𝑡 + 𝑑 = 𝐷 ⇒ 𝑡 =  

𝐷−𝑑

2
= 

22−18

2
= 2 ) 

 

Donc : 𝐾𝑡 = 2,18 

Question N°6 : - La contrainte nominale est :  

𝜎nominale = 
𝑁

𝑆
=  

𝑁

𝜋 ∙ 𝑑2 
4

=
4 𝐹

𝜋 . 𝑑2
=
4 × 14000 × 10

𝜋 × 182
=   550,2  𝑀𝑃𝑎 

- La contrainte maximale est :  

𝜎maximale = 𝐾𝑡 × 𝜎nominale = 2,18 × 550,2 = 1199,4 𝑀𝑃𝑎 

 

Question N°7 : On réalise la gorge à distance des zones d’application des efforts (tête de la 
vis et écrou en B) afin de ne pas affaiblir/sursolliciter les zones les plus 
sollicitées et ainsi éviter les concentrations de contraintes (principe de Saint-
Venant), les risques de rupture, et améliorer la tenue mécanique. 

 

 Problème N°15 : Allègement d’une bielle de pompe à pistons 

Le système présenté par la figure N°1 est une pompe à deux étages de compression. Cette dernière 

est actionnée à l’aide d’un levier (pièce N°16) manœuvré par un opérateur. Elle permet, par 

exemple, d’alimenter en énergie les vérins montés sur des presses de mécanicien.     
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Figure N°1 : Vue de la pompe Figure N°2 : Vue en coupe de la pompe 

La bielle référencée 14 sur la figure N°2 est produite par moulage d’un alliage d’aluminium. 

L’entreprise en charge de la fabrication de ce composant souhaite augmenter son profit en 

réduisant la masse de la pièce et ce, sans changer le matériau. Le cahier des charges retenu est le 

suivant : 

Matériau : AU4G Limite à rupture [MPa] : 355 

Coefficient de sécurité : 1,1 Limite d’élasticité en traction [MPa] : 280 

CdCf-01 : Allègement de la biellette 14 par modification de la géométrie 

Après avoir conduit une analyse statique (liaisons sans jeu et sans frottement), le bureau d’étude 

donne le torseur de section suivant (efforts en [N]) : 

{𝜏𝑖𝑛𝑡}𝐺 = {
−8 000 0
0 0
0 0

}

𝐺,𝑅

 

Deux solutions sont alors dessinées :  

 

Figure N°3 : Vue de la solution N°1 
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Figure N°4 : Vue de la solution N°2 

Répondez aux questions suivantes : 

Question N°1 :  Vérifiez la validité de chacune des deux solutions. Concluez. 

Question N°2 : Proposez un nouveau diamètre de trou pour la solution N°1. 

Question N°3 : Le volume de la bielle initial était de 4900,53mm3. Le volume de la bielle issu 
de la solution N°2 est de 3474,34mm3. Calculez le volume final de la bielle de 
la question N°2. Pour chacune des solutions, donnez le gain de matière 
obtenu. Concluez sur la solution à adopter vis-à-vis du gain, de la résistance 
et de la fabricabilité.  

  
Figure N°5 : Abaque pour la détermination des coefficients de contrainte en traction 

 

CORRECTION 

Question N°1 : Pour la solution N°1 : 

-Contrainte au loin de singularité géométrique : 

σ1 =
Nx
S1
=
8 000

8 ∙ 12
= 83,3MPa 

Au niveau de la singularité géométrique (du trou), il y a une concentration de 
contrainte, il convient donc de calculer dans un premier temps la contrainte 
nominale puis de la multiplier par le coefficient de contrainte kt. 
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-Contrainte nominale dans la singularité géométrique : 

σ2 =
Nx
𝑆2
=

8 000

(8 ∙ 12) − (6 ∙ 8)
= 166,6MPa 

 

-Coefficient de concentration de contrainte lié à la singularité : 

r
d⁄ =

3

6
= 0,5 par conséquent kt1 = 2,16 

-Contrainte max : 

σmax = σ2 ∙ kt1 = 166,6 ∙ 2,16 = 360MPa 

Pour la solution N°2 : 

-Contrainte au loin de singularité géométrique : 

σ1 =
Nx
S1
=
8 000

8 ∙ 6
= 166,7MPa 

-Contrainte nominale dans la singularité géométrique : 

σ2 = σ1 = 166,7MPa 

-Coefficient de concentration de contrainte lié à la singularité : 

{

r
d⁄ =

3

6
= 0,5

D
d⁄ =

12

6
= 2

→ 𝑃𝑎𝑟 𝑐𝑜𝑛𝑠é𝑞𝑢𝑒𝑛𝑡 kt2 = 1,43  

-Contrainte max : 

σmax = σ2 ∙ kt1 = 166,7 ∙ 1,43 = 238,4MPa 

En conclusion, on remarque que la solution N°1 n’est pas valide car la 
contrainte max dans la bielle dépasse la limite à rupture du matériau employé. 
La solution N°2, quant à elle convient tout à fait au cahier des charges. En effet, 
la contrainte max calculée dans la bielle reste inférieure à la limite d’élasticité 
du matériau et ce, même en appliquant le coefficient de sécurité de 1,1 
(attention à la fatigue du matériaux).  

Question N°2 : ATTENTION LA SOLUTION N’EST PAS UNIQUE 

Pour répondre à la contrainte principale du CDCF, il convient de rester en 
dessous de la limite d’élasticité du matériau entachée du coefficient de 
sécurité. Ainsi : 

σmax =
Re

s
=
280

1,1
= 255MPa 

Pour les trous circulaires le coefficient de concentration de contrainte varie 
entre 2,4 et 2,7 (on sélectionne un intervalle dans lequel travailler). Ainsi la 
contrainte nominale au niveau de la singularité géométrique doit être 
comprise entre 94,4 et 106,25MPa. 

 Pour commencer, nous allons prendre la valeur de la plus grande contrainte 
(106,25MPa) correspondant à un Kt=2,4 car c’est cette dernière qui va donner 
l’enlèvement de matière le plus important. Ainsi : 

𝑟
𝑑⁄ = 0,15 

Il y a une équation pour deux inconnues. Il convient donc de trouver une autre 
équation. En utilisant la fermeture géométrique, il vient : 
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{
𝑟
𝑑⁄ = 0,15

𝐷 = 2 ∙ 𝑟 + 𝑑
→ {

𝑟
𝑑⁄ = 0,15

12 = 2 ∙ 𝑟 + 𝑑
→ {

𝑟 = 1,38
𝑑 = 9,23

 

Il vient : 

𝑟 = 1,38𝑚𝑚 donc le diamètre du trou est de 2,77mm 

Il convient alors de vérifier la contrainte nominale liée à cette singularité 
géométrique : 

σnom =
Nx
𝑆2
=

8 000

(8 ∙ 12) − (2,77 ∙ 8)
= 108,3MPa 

On remarque que : 

σnom ∙ 𝑘𝑡 > σmax 

Cette solution n’est donc pas valide.  

Essayons avec kt=2,7 : 

{
𝑟
𝑑⁄ = 0,05

𝐷 = 2 ∙ 𝑟 + 𝑑
→ {

𝑟
𝑑⁄ = 0,15

12 = 2 ∙ 𝑟 + 𝑑
→ {

𝑟 = 0,55
𝑑 = 10,9

 

Il vient : 

𝑟 = 0,55𝑚𝑚 onc le diamètre du trou est de 1,1mm 

Il convient alors de vérifier la contrainte nominale liée à cette singularité 
géométrique : 

σnom =
Nx
𝑆2
=

8 000

(8 ∙ 12) − (1,1 ∙ 8)
= 91,7MPa 

Finalement : 

σnom ∙ 𝑘𝑡 < σmax 

La solution est donc valide. On pourrait continuer l’étude en affinant 
l’intervalle de travail afin de converger vers une valeur unique. Le diamètre 
du trou doit donc être de 1,1mm 

Question N°3 : Le volume de la bielle issue de la modification de la solution N°1 (solution N°1-
V2) est de : 

𝑉𝑓 = 4900,53 −
𝜋 ∙ 1,12 ∙ 8

4
= 4892,93𝑚𝑚3 

Ainsi le gain en masse associé à chacune des solutions est : 

- Pour la solution N°2 : 

𝐺𝑠𝑜𝑙−2 =
|3474,34 − 4900,53|

4900,53
∙ 100 = 29% 

- Pour la solution N°1-V2 : 

𝐺𝑠𝑜𝑙−1−𝑉2 =
|4892,93 − 4900,53|

4900,53
∙ 100 = 0,2% 

On remarque que la solution N°2 est très rentable car elle fait économiser 
29% de matière. La modification à opérer sur le modèle de fonderie pour 
obtenir cette forme de bielle est minime et tout à fait possible. En revanche la 
solution N°1-V2 est quant à elle inutile car le gain en masse est ridicule et la 
complexité de mise en œuvre est trop grande (impossible de mettre un noyau 
de cette taille pour obtenir le trou au centre de la pièce, et le faire par perçage 
ajouterait une phase => trop cher). 
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  Problème N°16 : Etude d’un câble de treuil 

 

Répondez dans l’ordre aux questions suivantes :  

Question N°1 : Déterminez le point le plus sollicité du câble.  

 

Question N°2 : Calculez la longueur maximale du câble ? Est-il adapté à la sécurisation des 
opérateurs de la tour ?  

   

Question N°3 : Calculer l’allongement de ce câble si sa longueur initiale correspond à la 
hauteur de la tour (on prendra E = 210GPa).   

 

CORRECTION 

Question N°1 : Déterminez le point le plus sollicité du câble.  

 La répartition du poids le long du câble est du type « y = ax + b ».  

Ainsi, l’effort normal en tout point de la poutre est donné par la relation :  

 

Nx = −
πρaciergd

2

4
∙ x +

πρaciergd
2L

4
=  
πρaciergd

2

4
(L − x) 

 

Le point le plus sollicité est donné pour x = 0 (au niveau du treuil).  

 

Question N°2 : Calculez la longueur maximale du câble ? Est-il adapté à la sécurisation des 
opérateurs de la tour ?  

 On donne : 
Re
s
≥
Nx
S
  

Ainsi, en utilisant l’expression déterminée à la question N°1 :  
Re
s
≥ ρaciergL 

Le Burj Khalifa s’élève à 828 m (figure N°1). Il constitue le cadre 
d’une étude visant à dimensionner un câble de treuil destiné à 
sécuriser les laveurs de vitres opérant sur les façades 
extérieures de la tour.  

Le filin est considéré comme librement suspendu dans le vide, 
soumis uniquement à son propre poids, et modélisé sous la 
forme d’une barre d’acier à section circulaire. On donne les 
caractéristiques suivantes :  

- Re = 235 MPa 
- E = 210 GPa 
- ρacier = 7850 kg.m-3 
- Coefficient de sécurité, s = 2 

 

 
 Figure N°1 : Vue du Burj Khalifa 
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Finalement : 

L ≤
Re

s ∙ ρacier ∙ g
 

L’application numérique donne : 

L ≤ 1496,8 mètres 

La longueur trouvée est supérieure à la hauteur de la tour. Il peut donc 
convenir si on continue à ne pas considérer le poids de l’opérateur 
suspendu au bout, heureusement à cette hauteur ses pieds toucheront déjà 
le sol… 

 

Question N°3 : Calculer l’allongement de ce câble si sa longueur initiale correspond à la 
hauteur de la tour (on prendra E = 210GPa).   

 On donne : 

εxx =
∆(dx)

dx
=
σn(x)
E

 

Ainsi : 

∆L = ∫
σn(x)
E

L

0

∙ dx 

La contrainte normale en tout point de la poutre est donnée par la relation :  

σn(x) ≥
Nx
S
=  ρacierg ∙ (L − x) 

On remarque que la contrainte n’est pas constante le long de la barre.  

Finalement :  

∆L =
ρacierg

E
∙ ∫ (L − x) ∙ dx

L

0

= 
ρacier ∙ g ∙ L

2

2 ∙ E
 

L’application numérique donne :  

∆L = 0,128 mètres soit 12,8 cm 
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Hyperstatisme et treillis  
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 Problème N°17 : Introduction à l’étude des treillis (méthode de RITTER) 

Répondez aux questions suivantes relatives à la structure de la figure N°1 : 

 

Question N°1 : Rappelez la définition et les 
caractéristiques d’une barre. 

Question N°2 : Déterminez les actions de liaison au 
niveau du point A et B. 

Question N°3 : Déterminez les efforts normaux 
dans chacune des barres du 
système. 

Données : 

- ‖AB⃗⃗⃗⃗  ⃗‖ = ‖BC⃗⃗⃗⃗  ⃗‖ = ‖CD⃗⃗⃗⃗  ⃗‖ = ‖DA⃗⃗⃗⃗  ⃗‖ = 1m 

- ‖F1⃗⃗⃗⃗ ‖ = ‖F2⃗⃗⃗⃗ ‖ = 5kN 

Figure N°1 : Paramétrage du treillis de l’étude 

CORRECTION 

Question N°1 : Une barre est un solide soumis à deux actions mécaniques (deux glisseurs). 
Ainsi, ces actions sont de même direction, de sens opposé et de même norme. 

Question N°2 : Il convient de réaliser le BAME : 

{τA}A,R1 = {
𝑋𝐴 −
𝑌𝐴 −
− 0

}

𝐴,R1

; {τB}B,R1 = {
0 −
𝑌𝐵 −
− 0

}

B,R1

; {τC}𝐶,R1 = {
−𝐹1 −
−𝐹2 −
− 0

}

C,R1

 

On déplace l’ensemble des torseurs au point A, car c’est en ce point qu’il y a le plus grand nombre 
d’inconnues : 

{τB}𝐴,R1 = {
0 0
𝑌𝐵 0
0 1 ∙ 𝑌𝐵

}

𝐴,R1

; {τC}A,R1 = {
−𝐹1 0
−𝐹2 0
0 −1 ∙ 𝐹2 + 1 ∙ 𝐹1

}

𝐴,R1

 

L’application du PFS donne : 

{
𝑋𝐴−𝐹1 = 0

𝑌𝐴 + 𝑌𝐵−𝐹2 = 0
1 ∙ 𝑌𝐵−1 ∙ 𝐹2 + 1 ∙ 𝐹1 = 0

→ {

𝑋𝐴 = 𝐹1 = 5𝑘𝑁
𝑌𝐵 = 𝐹2 − 𝐹1 = 0𝑘𝑁
𝑌𝐴 = 𝐹1 = 5𝑘𝑁

 

Question N°3 : Les sollicitations dans les barres sont : 
 

 

Barre ① : 0kN (obtenue après une coupure en D) 

Barre ② : 0kN(obtenue après une coupure en B) 

Barre ③ : 0kN (obtenue après une coupure en B) 

Barre ④ : 0kN (obtenue après une coupure en D) 

Barre ⑤ : -7,07kN (obtenue après une coupure en A ou en C) => compression 

 

x1⃗⃗  ⃗ 

y1⃗⃗  ⃗ 

F1 

F2 

A 
B 

C D 

① 

② 

③ 
⑤ 

④ 
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 Problème N°18 : Etude d’un treillis de type Warren 

Le treillis de type « Warren simple » 
est l’une des structures métalliques la 
plus utilisée pour la réalisation de 
ponts (ferroviaire, autoroutier, 
passerelle, …). Elle se compose d’une 
série de triangles équilatéraux 
disposés l’un sur l’autre. Cet exercice 
propose de dimensionner les barres 
de la structure en appliquant la 
méthode de RITTER.  

 
Figure N°1 : Vue d’un treillis de type Warren simple  

(source : Structurae) 

La longueur d’un côté des triangles constituant le treillis est de 5 mètres. La structure est sollicitée 

par un effort ponctuel en C de 20kN.   

 
 

 
 

Figure N°2 : Paramétrage du système 
 

Question N°1 : Déterminez les actions aux liaisons puis les efforts intérieurs dans les 
différentes barres du treillis. Consignez vos résultats dans un tableau.  

Question N°2 :  Le matériau utilisé pour la réalisation de ce treillis est un acier S235. Le 
coefficient de sécurité adopté pour le dimensionnement est de 3, déterminez 
la dimension de la barre la plus sollicitée en traction (barre de section carrée).  
Déterminez également sa longueur après allongement (E=210GPa).  

CORRECTION 

Question N°1 : Dans un premier temps, il convient de réaliser le BAME : 

{τB}B,R1 = {
𝑋𝐵 −
𝑌𝐵 −
− 0

}

𝐵,R1

; {τA}A,R1 = {
0 −
𝑌𝐴 −
− 0

}

A,R1

; {τC}𝐶,R1 = {
0 −
−𝐹 −
− 0

}

C,R1

 

On déplace l’ensemble des torseurs au point B, car c’est en ce point qu’il y a le plus grand nombre 
d’inconnues : 

{τA}𝐵,R1 = {
0 0
𝑌𝐴 0
0 −10 ∙ 𝑌𝐴

}

𝐵,R1

; {τC}B,R1 = {
0 0
−𝐹 0
0 7,5 ∙ F

}

𝐵,R1

 

 

 

 

 

A B 

x1⃗⃗  ⃗ 

y1⃗⃗  ⃗ 

C 

F 

① 

② ③ 

④ 

⑤ 

⑥ ⑦ 

D 

E 
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L’application du PFS donne : 

{

𝑋𝐵 = 0
𝑌𝐴 + 𝑌𝐵 − 𝐹 = 0

−10 ∙ 𝑌𝐴 + 7,5 ∙ 𝐹 = 0
→

{
 
 

 
 

𝑋𝐵 = 0𝑘𝑁

𝑌𝐵 =
2,5

10
∙ 𝐹 = 5𝑘𝑁

𝑌𝐴 =
7,5

10
∙ 𝐹 = 15𝑘𝑁

 

Les sollicitations dans les barres sont : 
 

 

Barre ① : −
15

sin60
≈ −17,3𝑘𝑁  - Effort de compression. Coupure autour de A 

Barre ② : 15

tan60
≈ 8,7𝑘𝑁  - Effort de traction. Coupure autour de A 

Barre ③ : 5

tan60
≈ 2,9𝑘𝑁  - Effort de traction. Coupure autour de B 

Barre ④ : −
5

cos60∙tan60
≈ −5,8𝑘𝑁  - Effort de compression. Coupure autour de D 

Barre ⑤ : −
10

tan60
≈ −5,8𝑘𝑁  - Effort de compression. Coupure autour de C  

Barre ⑥: −
5

sin60
≈ −5,8𝑘𝑁  - Effort de compression. Coupure autour de C 

Barre ⑦ : 5

cos60∙tan60
≈ 5,8𝑘𝑁  - Effort de traction. Coupure autour de D 

 

 

Question N°2 : La barre la plus sollicitée en traction est la barre N°2 avec un effort intérieur 
de 8,7kN.  

Ainsi : 

𝑅𝑒
𝑠
=

𝑁2
𝑆𝑒𝑐𝑡𝑖𝑜𝑛

 

Avec : 

𝑆𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑎2 

Finalement : 

𝑎 = √
𝑁2 ∙ 𝑠

𝑅𝑒
= 10,5𝑚𝑚  

Attention cet effort n’est pas le plus dimensionnant, hashtag flambement !!!! 

L’allongement vaut : 

𝑅𝑒
𝑠
= 𝐸 ∙

Δ𝐿

𝐿0
= 𝐸 ∙

(L − 𝐿0)

𝐿0
 

Ainsi : 

𝐿 = [
𝑅𝑒 ∙ 𝐿0
𝑠 ∙ 𝐸

] + 𝐿0 = 5,0019𝑚 
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 Problème N°19 : Etude d’une articulation de godet 

Une pelle mécanique est une machine qui permet d’effectuer divers travaux tels que le creusement 

de tranchées ou le terrassement. Les figures suivantes présentent le système dans son ensemble 

ainsi que la vue détaillée du mécanisme permettant le mouvement du godet. 

 
 

Figure N°1 : Vue d’une articulation de godet d’une pelle mécanique 

On se propose de dimensionner les différentes pièces de cette articulation. Pour ce faire, nous 

considèrerons la modélisation ci-dessous où le vérin travaille en sortie de tige (Fvérin = 100kN). Les 
liaisons en A, B, C et D sont parfaites et sans jeu.  

 

Figure N°2 : Modélisation de l’articulation 

 Répondez aux questions suivantes :   

Question N°1 : A l’aide de la méthode de RITTER, déterminez les efforts intérieurs dans le 
levier, la tige du vérin ainsi que dans la bielle. 

Question N°2 : Dimensionnez le levier ② sachant que : 

- Le matériau employé pour sa réalisation est un acier S355. 
- Le coefficient de sécurité adopté est de 1,5. 
- La section du levier est rectangulaire avec un rapport L/l = 2.  

Commentez les résultats obtenus. 

Question N°3 : Dimensionnez l’axe d’articulation en B sachant que : 

- Le montage se fait en porte à faux. 
- Le coefficient de sécurité adopté est de 1,5. 
- L’acier utilisé a une limite de cisaillement (Rpg) de 150MPa. 

Vérin d’outil - ① 

Bras 

Levier - ② 

Bielle - ③ 

Godet 

② 

③ 
① 

A 

B 

C 

D x0⃗⃗  ⃗ 

y0⃗⃗  ⃗ 

Fvérin = 100kN 

θ = 8° α = 12° 
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Commentez les résultats obtenus. 

CORRECTION 

Question N°1 : La première coupure au point A donne l’effort dans la barre N°1 : 

F1 = −100kN (compression) 

La deuxième coupure au point D donne les efforts dans les barres restantes : 

F3 = −101,24kN (compression) et F2 = 34,97kN (traction) 

Question N°2 : Le levier (Attention on dimensionne UN levier et il y en a DEUX sur la photo…) 
est soumis à un effort de traction de 17,5kN. Ainsi : 

𝜎𝑙𝑒𝑣𝑖𝑒𝑟 =
𝑅𝑒
𝑠
=

𝑁𝑥
𝑆𝑒𝑐𝑡𝑖𝑜𝑛

 

Il vient : 

𝑙 = √
F2 ∙ 𝑠

𝑅𝑒 ∙ 2
= 6,1𝑚𝑚 𝑑𝑜𝑛𝑐 𝐿 = 12,2𝑚𝑚  

Dimensions faibles par rapport à la réalité car il faudrait envisager tous les 
cas et notamment lorsque la tige du vérin rentre (le levier serait soumis à de 
la compression => flambement, la suite au prochain semestre).  

Question N°3 : On donne : 

𝜏𝑎𝑑𝑚 =
𝑅𝑝𝑔

𝑠
=
4 ∙ 𝑇

𝜋 ∙ 𝐷2
 

Finalement : 

𝐷 = √
4 ∙ T ∙ 𝑠

𝑅𝑝𝑔 ∙ 𝜋
= 15𝑚𝑚 

Le cisaillement n’est pas ici dimensionnant (diamètre très petite de l’axe). Il 
conviendrait de calculer la pression de matage (ici de 194MPa 
(17,5x103/(15x6)) – max de 60 MPa) afin d’assurer le bon fonctionnement et 
la bonne maintenabilité du système.   
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  Problème N°20 : Etude d’une passerelle suspendue  

On modélise une passerelle suspendue à un plafond comme indiqué par la figure suivante :  

 
Figure N°1 : Vu de la modélisation de la passerelle suspendu 

On considère ici que la passerelle ainsi que le plafond sont indéformables. Les câbles qui la 

supportent sont identiques et assimilables à une barre de diamètre Øbarre réalisée en acier (E, υ) 

et espacés d’une longueur L. Toutes les liaisons sont considérées comme parfaites. 

 Question N°1 : Déterminez le degré d’hyperstatisme de la structure. Combien 
d’équation(s) supplémentaire(s) est-il nécessaire d’avoir pour pouvoir 
résoudre ce problème ? 

Question N°2 :  Déterminez une équation de déformation permettant de lever 
l’hyperstaticité et de donner les efforts dans l’ensemble des câbles en 
fonction des données du problème.  

CORRECTION 

Question N°1 : Il y a quatre inconnues : 

- 3 efforts de traction dans les barres. 
- 1 inconnue de réaction au point E (liaison ponctuelle). 

Le PFS ne fournit que 3 équations dans le plan. 

Le problème est donc hyperstatique de degrés 1. 

On a besoin d’une équation supplémentaire pour pouvoir résoudre le 
problème. 

Question N°2 : L’application du PFS sur la barre N°4 donne : 

{

𝐸𝑥 = 0
𝐹1 + 𝐹2 + 𝐹3 − 𝑃 = 0

−
2𝑃𝐿

3
+ 𝐹2𝐿 + 2𝐹3𝐿 = 0

 

Nous allons utiliser les équations de déformation des fils : 

- En notant « l » la longueur initiale de chaque fil 
- La loi de Hooke donne : 

∆𝑙 =
𝑁𝑥𝑙

𝐸𝐴
 

- Avec ΔA, ΔB et ΔC les allongements respectifs des 3 fils. 
- Le théorème de Thalès donne : 

① ② ③ 

A B C 

D 

E 

P 

x0⃗⃗  ⃗ 

y0⃗⃗  ⃗ 

A’ B’ C’ 

2L/3 
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∆𝐵 − ∆𝐴

𝐿
=
∆𝐶 − ∆𝐴

2𝐿
 

 

Finalement on obtient l’équation manquante : 

2∆𝐵 − ∆𝐴 − ∆𝐶 = 0 → 2𝐹2 − 𝐹1 − 𝐹3 = 0 

Ainsi : 

{
 
 

 
 𝐹1 =

𝑃

2

𝐹2 =
𝑃

3

𝐹3 =
𝑃

6
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Sollicitation élémentaire : Cisaillement 
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 Problème N°21 : Effort sur un tapis de course 
 

Un tapis de course est constitué d’un 
châssis métallique soutenant la bande 
roulante et le poids de l’utilisateur. 
La bande et le moteur s’appuient sur deux 
poutres rectangulaires situées sous la 
plateforme. 
Lorsqu’un utilisateur (Sarah) se place au 
centre du tapis, le poids se répartit 
équitablement sur les deux poutres. 

On souhaite étudier le cisaillement dans 
une poutre au niveau de ses appuis, en 
négligeant la flexion.  

Figure N°1 : Sarah sur son tapis de course 
 

Les données du problème sont les suivantes : 

- Longueur de la poutre : L=1.5 m 

- Section rectangulaire :  𝑏= 60 mm, ℎ = 100 mm 

- Poids de Sarah : P= 785 N 

- Position de Sarah sur la poutre : a=1.1 m 

- Module de Coulomb : G=80 GPa 

 

 

Figure N°2 : Modélisation du problème 

Remarque La charge F supportée par une seule poutre est la moitié du poids total de Sarah. 

Question N°1 :  Déterminez le torseur de cohésion.  

Question N°2 : Calculez la contrainte tangentielle moyenne. 

Question N°3 : Estimez l’angle de distorsion (ou de glissement) dû au cisaillement dans la 
poutre. Commentez le résultat. 

CORRECTION 

Question N°1 : Etude du tronçon] AB[: 0<x<a 

{𝜏𝑖𝑛𝑡}𝐺1,𝑅 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺1,𝑅 = {𝜏𝐵}𝐺1,𝑅 = {
0 0
−𝐹 0
0 −𝐹(𝑎 − 𝑥)

}

𝐺1,𝑅

 

Etude du tronçon] BC[: a<x<L 
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{𝜏𝑖𝑛𝑡}𝐺2,𝑅 = {𝜏𝑒𝑥𝑡→𝐸2}𝐺2,𝑅 = {𝜏𝐶}𝐺2,𝑅 = {
0 0
0 0
0 0

}

𝐺2,𝑅

 

 

Dans la suite, on néglige le moment fléchissant suivant z pour se focaliser sur 
le cisaillement. 

 

N.B : la flexion sera abordée au S3 

Question N°2 : L’effort tranchant est maximal sur le tronçon] AB[ avec Ty=-F sur l’ensemble 
du tronçon 

La contrainte tangentielle moyenne est donnée par : 

 

𝜏𝑚𝑜𝑦 =
𝑇𝑦

𝑆
=
392,5

0,006
= 65,4 kPa 

 

Question N°3 : La déformation angulaire moyenne (ou glissement) est : 

 

𝛾 =
𝜏𝑚𝑜𝑦

𝐺
=
65,4 ∙ 103

80 ∙ 109
= 8,2 ∙ 10−7 rad 

 

Remarque : 

 

L’angle de distorsion traduit la déformation en cisaillement du matériau. 

Il correspond à l’angle entre deux fibres initialement perpendiculaires dans la 
poutre, qui se déforment sous l’effet des efforts tranchants. 

 

Plus 𝛾 est grand, plus la poutre “glisse” localement (déformation importante). 

 

Ici, 𝛾=8,2 ∙ 10−7 rad est extrêmement faible, ce qui signifie que la poutre est 
très rigide en cisaillement : la déformation angulaire est négligeable à l’œil nu. 

Ce qui est rassurant pour un tapis de course 😊  
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 Problème N°22 : Etude d’un joint collé 

L’utilisation de matériaux composites est de plus 
en plus répandue. Leur usage impose le 
développement de colles performantes 
permettant d’assembler de façon définitive et 
durable deux pièces de structure entre-elles. On se 
propose d’étudier le collage d’un triangle 
automobile en fibre de carbone sur une rotule en 
aluminium (figure N°1).  

On considère que la colle est uniformément 
répartie dans le joint. La modélisation du 
problème est la suivante : 

 

Figure N°1 : Vue du triangle 
 

 

Figure N°2 : Vue en coupe de la liaison 

Question N°1 :  Déterminez l’expression de la surface du joint collée en fonction de L et Ø. Cette 
surface est formée par la jonction entre le triangle et la rotule. 

Question N°2 : Sachant que l’effort maximal auquel l’assemblage est soumis est de 15kN, que le 
coefficient de sécurité employé est de 2 et que la résistance au cisaillement de la 
colle est de 15 MPa, déterminez la longueur L d’implantation du joint.   

Question N°3 : Déterminez l’angle de glissement sachant que le module de Coulomb de la colle 
est de G=600 MPa.  

Question N°4 : L’épaisseur de colle est de 0,5 mm. Déterminez le déplacement relatif entre le 
triangle et la rotule lorsque la charge de 15 kN est appliquée. Le cahier des 
charges impose un déplacement max de 5x10-3 mm. Est-ce que l’assemblage 
répond aux contraintes du CdCf ? Déterminez la nouvelle longueur 
d’implantation.  

CORRECTION 

Question N°1 :  La surface sollicitée (notée Ssol) est une surface cylindrique. Son expression, 
fonction des différents paramètres du problème est la suivante :  

SSol = 2 ∙ π ∙
∅

2
∙ L == π ∙ ∅ ∙ L = π ∙ 20 ∙ L 

Question N°2 : La contrainte tangentielle admissible (notée τe-colle) de la colle est de : 

𝜏𝑒−𝑐𝑜𝑙𝑙𝑒 =
15

2
= 7,5 MPa 

L’assemblage est soumis à un effort tangentiel de 15kN. Cet effort engendre une 
contrainte, elle aussi tangentielle (notée τ) de : 

τ =
15 ∙ 103

𝑆𝑆𝑜𝑙
 

Triangle 

Rotule 

L 

Ø20mm 
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Or τ=τe-colle 

En injectant le résultat de la question N°1, on obtient : 

7,5 =
15 ∙ 103

π ∙ 20 ∙ 𝐿
 

Ainsi : 

L =
15 ∙ 103

π ∙ 20 ∙ 7,5
= 31,8 𝑚𝑚 

La longueur à implanter est de 31,8 mm 

Question N°3 : On donne : 

𝜏 = 𝐺 ∙ 𝛾 

En utilisant les données de la question précédente : 

𝛾 =
𝜏

𝐺
=
7,5

600
= 0,0125 𝑟𝑎𝑑 

Question N°4 : On illustre le phénomène de glissement par la figure suivante : 

 

Ainsi :  

∆𝐿 = 𝑒𝑝𝑎𝑖𝑠𝑠𝑒𝑢𝑟 ∙ tan 𝛾 = 0,5 ∙ tan 0,0125 = 0,0063𝑚𝑚 

Le cahier des charges n’est pas respecté. Il convient alors de revoir le 
dimensionnement. Pour ce faire, faisons le chemin dans l’autre sens. 
Finalement : 

𝐿 =
15 ∙ 103

𝜋 ∙ 20 ∙ 600 ∙ tan−1 [
5 ∙ 10−3

0,5 ]
= 39,79𝑚𝑚 

 

avec : 𝜏 = 𝐺 ∙ 𝛾 = 𝐺 ∙ tan−1 [
Δ𝐿

𝑒
] 

Il est alors impératif de vérifier la contrainte de cisaillement de la colle pour 
valider le dimensionnement : 

τ =
15 ∙ 103

𝜋 ∙ 20 ∙ 39,79
= 6 < 7,5 𝑑𝑜𝑛𝑐 𝑂𝐾 

 

  

Rotule 

Triangle 

Colle 

ΔL 

Epaisseur de colle 

γ 
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 Problème N°23 : Optimisation d’un collage 

On se propose d’étudier le collage structural de deux pièces. Pour maximiser la résistance du joint, 

une taille en « biseau » est retenue par le bureau d’étude (figure N°1). Toutefois, aux vues des 

caractéristiques de la colle il est nécessaire de prévoir l’angle et la largeur avec lesquels chaque 

pièce doit être préparée.  

 
 

Figure N°1 : Configuration du joint collé 

La colle utilisée pour réaliser cet assemblage a les caractéristiques suivantes : 

SikaForce® - 7720 L105 
Colle bi-composant thixotrope pour assemblage 

 
      Résistance à la traction (ISO 527 / CQP 545-2) 15 N/mm² environ 

      Allongement à la rupture (ISO 527 / CQP 545-2) 6% environ 

      Résistance en cisaillement (DIN EN 1465 / CQP 546-2) 10 N/mm² environ 

Figure N°2 : Caractérisques de la colle (extrait du catalogue SIKA) 

Répondez aux questions suivantes :  

Question N°1 : Exprimez la surface collée en fonction des paramètres du problème.  

Question N°2 : Exprimez l’effort normal à la surface en fonction de P et θ. Donnez 
l’expression de la contrainte normale à cette surface.  

Question N°3 : Exprimez l’effort tangentiel à la surface collée en fonction de P et θ. Donnez 
l’expression de la contrainte tangentielle à cette surface.  

Question N°4 : Recherchez la valeur à donner aux différents paramètres à partir du 
graphique ci-dessous afin que le collage puisse résister à un effort de 10kN. 
Le coefficient de sécurité adopté est de 1. 

a 

40mm 

θ 

P 

P 
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CORRECTION 

Question N°1 : L’expression de la surface collée (notée Scollée) est : 

𝑆𝑐𝑜𝑙𝑙é𝑒 = 𝐿𝑐𝑜𝑙𝑙é ∙ 𝑎 =
40

sin𝜃
∙ 𝑎 

Question N°2 : L’effort normal à la surface s’exprime ainsi : 

𝐹𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑃 ∙ sin𝜃 

La contrainte normale induite est donc : 

𝜎𝑛𝑜𝑟𝑚𝑎𝑙𝑒 =
𝐹𝑛𝑜𝑟𝑚𝑎𝑙
𝑆𝑐𝑜𝑙𝑙é𝑒

=
𝑃 ∙ sin 𝜃2

40 ∙ 𝑎
 

Question N°3 : L’effort tangentiel à la surface s’exprime ainsi : 

𝑇𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑒𝑙 = 𝑃 ∙ cos𝜃 

La contrainte tangentielle induite est donc : 

𝜏𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑒𝑙𝑙𝑒 =
𝑇𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑒𝑙

𝑆𝑐𝑜𝑙𝑙é𝑒
=
𝑃 ∙ cos𝜃 ∙ sin𝜃

40 ∙ 𝑎
 

Question N°4 : On obtient donc un système de deux équations à deux inconnues : 

{
 

 𝜎𝑛𝑜𝑟𝑚𝑎𝑙𝑒 =
𝑃 ∙ sin 𝜃2

40 ∙ 𝑎

𝜏𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑒𝑙𝑙𝑒 =
𝑃 ∙ cos 𝜃 ∙ sin 𝜃

40 ∙ 𝑎

 

En réalisant l’application numérique : 

{
 

 15 =
10 ∙ 103 ∙ sin 𝜃2

40 ∙ 𝑎
(1)

10 =
10 ∙ 103 ∙ cos 𝜃 ∙ sin𝜃

40 ∙ 𝑎
(2)

 

Il convient alors d’exprimer chacune des équations sous la forme a=f(θ) et 
d’utiliser la résolution graphique fournie dans l’exercice. Ainsi : 
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{
 

 𝑎 =
10 ∙ 103 ∙ sin 𝜃2

40 ∙ 15
(1)

𝑎 =
10 ∙ 103 ∙ cos 𝜃 ∙ sin𝜃

40 ∙ 10
(2)

 

Les lois de Simpson permettent d’écrire : 

sin𝐴 ∙ cos𝐵 =
sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)

2
 

Finalement : 

{
𝑎 = 16,6 ∙ sin 𝜃2 (1)

𝑎 = 12,5 ∙ sin 2𝜃 (2)
 

Graphiquement on obtient : a=12,1 mm et θ=51,8° 
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  Problème N°24 : Etude d’un Flexibloc 

Pour limiter la transmission des vibrations d’un élément vers un autre, 
il est courant d’utiliser des éléments élastiques (silentbloc, flexibloc,…). 
La figure N°1 illustre l’un de ces éléments qui se compose de deux tubes 
métalliques concentriques entre lesquels une matrice polymère est 
insérée. On les retrouve notamment sur la fixation du moteur thermique 
d’une voiture sur le châssis. 

 

Figure N°1 : Flexibloc 

  On se propose d’étudier les caractéristiques d’un Flexibloc. Pour cela le constructeur donne : 

  
Figure N°2 : Catalogue PAULSTRA® 

Répondez aux questions suivantes : 

Question N°1 :  Sélectionnez dans la liste précédente, un flexibloc qui permet de résister à une 
charge axiale de 0,4kN. Déterminez l’angle de glissement de la matrice 
polymère (noté γ) lié à l’application de cette charge. 

Question N°2 : Déterminez la surface du flexibloc qui est cisaillée.  

Question N°3 : En déduire le module de Coulomb du polymère.  

Question N°4 : Le coefficient de Poisson du polymère vaut υ=0,5. Déterminez le module de 
Young (noté E) de ce matériau. 

CORRECTION 

Question N°1 : D’après les données du constructeur, le flexibloc qui résiste à une charge 
axiale de 40daN a les caractéristiques suivantes (référence n°561207) : 

- Epaisseur du polymère : 6mm (on néglige les épaisseurs des tubes) 
- Longueur de la surface cisaillée : 25mm 
- Déplacement axial sous charge : 1,5mm 

L’angle de glissement du polymère s’exprime ainsi : 

𝛾 = tan−1 (
Δ𝐿

𝑒
) = tan−1 (

1,5

6
) = 0,245 𝑟𝑎𝑑 𝑠𝑜𝑖𝑡 14,04° 

Question N°2 : La surface du flexibloc qui est cisaillée correspond à la surface qui est 
colinéaire à l’effort (la force est tangente à la surface => contrainte 
tangentielle). Cela implique un cylindre de 10mm de diamètre par 25mm de 
longueur : 

S = 2 ∙ π ∙
𝑑

2
∙ L = π ∙ 10 ∙ 25 = 785,4mm² 

Question N°3 : Nous savons que : 

𝜏 = 𝐺 ∙ 𝛾 

Et que : 
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𝜏 =
𝑇

𝑆
 

Ainsi : 

𝐺 ∙ 𝛾 =
𝑇

𝑆
 

Il convient simplement d’isoler G (module de Coulomb) : 

𝐺 =
𝑇

𝑆 ∙ 𝛾
=

400

785,4
∙

1

0,245
= 2,08 𝑀𝑃𝑎 

Question N°4 : Soit l’expression liant le module de Young et le coefficient de poisson au 
module de Coulomb : 

𝐺 =
𝐸

2(1 + 𝜐)
 

Ainsi : 

𝐸 = 𝐺 ∙ 2(1 + 𝜐) 

L’application numérique donne : 

𝐸 = 2,08 ∙ 2(1 + 0,5) = 6,24 𝑀𝑃𝑎 

 Problème N°25 : Montage en chape ou en porte à faux ?  

Une articulation, au sens large du terme (liaison pivot) est une liaison mécanique dans laquelle 

deux pièces sont liées ensemble à l’aide d’un axe (arbre). L’objectif est de permettre un 

mouvement relatif de rotation entre ces différentes pièces. Il existe deux manières de concevoir 

ce type de liaison : 

  

Système N°1 : Montage en chape Système N°2 : Montage en porte à faux 

Pour autant, chacune d’entre elles possède ses avantages et ses inconvénients. On se propose de 

les mettre en évidence au travers de cet exercice. L’axe est réalisé dans un acier dont la limite 

élastique en cisaillement est τe (exprimée en MPa). Le système doit pouvoir résister à un effort P 

(exprimé en N). Le coefficient de sécurité adopté est s. 

Question N°1 : Déterminez l’expression du diamètre de l’axe à implanter sur le système N°1 
pour assurer son bon fonctionnement. Quelles sont les hypothèses de 
résolution ? 
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Question N°2 :  Déterminez l’expression du diamètre de l’axe à implanter sur le système N°2 
pour assurer son bon fonctionnement. Quelles sont les hypothèses de 
résolution ? 

Question N°3 :  Quels sont alors les avantages et les inconvénients d’un montage en chape et d’un 
montage en porte à faux ? 

CORRECTION 

Question N°1 : Pour le montage en chape, il y a deux surfaces cisaillées. Ainsi 

𝜏𝑒
𝑠
=

𝑇

2 ∙ 𝑆1
 

Ainsi : 

∅𝑐ℎ𝑎𝑝𝑒 = √
𝑇 ∙ 𝑠 ∙ 2

𝜏𝑒 ∙ 𝜋
 

Nous considérons ici que la liaison est sans jeu et que l’axe n’est soumis qu’à 
du cisaillement pur.  

Question N°2 : Pour le montage en porte à faux, il n’y a qu’une seule surface cisaillée. Ainsi : 

𝜏𝑒
𝑠
=
𝑇

𝑆2
 

Ainsi : 

∅𝑝𝑎𝑓 = √
𝑇 ∙ 𝑠 ∙ 4

𝜏𝑒 ∙ 𝜋
 

Nous considérons ici que la liaison est sans jeu et que l’axe n’est soumis qu’à 
du cisaillement pur. 

Question N°3 : Finalement : 

∅𝑐ℎ𝑎𝑝𝑒
∅𝑝𝑎𝑓

=
√2

2
 

On remarque que le diamètre qu’il convient d’utiliser pour un montage en 
chape est deux fois plus petit que celui d’un montage en porte à faux (même 
matériaux, même coefficient de sécurité, même sollicitation). Le choix de l’un 
ou l’autre des montages est conditionné par l’espace disponible dans le 
mécanisme. En effet, le montage en chape est plus encombrant axialement 
(présence d’une deuxième chape) alors que le montage en porte à faux et plus 
encombrant radialement (axe plus gros).   
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 Problème N°26 : Axe de roue d’une trottinette  

 On se propose de dimensionner l’axe de la roue avant d’une trottinette de classe A. Pour cela on 

calque notre modélisation sur l’essai de mise en conformité des trottinettes défini par la norme 

NF EN 14619 (extrait ci-dessous). 

 
Figure N°1 : Extrait de la norme NF EN 14619 

La modélisation retenue est la suivante : 

 
 

Soit les paramètres suivants (les distances sont 
en [mm] et les efforts en [N]) : 

- 𝐴𝐶⃗⃗⃗⃗  ⃗ = 700𝑥 − 40𝑦  

- 𝐴𝐵⃗⃗⃗⃗  ⃗ = −700𝑥  

- 𝐹 = −500𝑦  
- Diamètre de l’axe de roue : 10mm 
- Coefficient de sécurité : 2 

Figure N°2 : Modélisation de la trottinette 

Répondez dans l’ordre aux questions suivantes : 

Question N°1 : Déterminez, en utilisant la méthode de votre choix (statique analytique ou 
statique graphique) les actions de liaisons aux points A (pivot) et B (ponctuelle).  

Question N°2 :  Déterminez la contrainte moyenne et maximale (figure N°2) de l’axe de la roue 
avant de la trottinette sachant que le montage est réalisé en chape.   

Question N°3 : Sélectionnez dans la liste suivante (tableau N°1), le matériau qui répond aux 
exigences de résistance de l’axe. Calculez alors le coefficient de sécurité obtenu. 

  

Type Désignation τadmissible [MPa] 
Acier de construction S235 135 
Acier faiblement allié 36NiCrMo16 600 
Alliage d’aluminium EN AW-2017 115 

A 

B 

C 

F 

𝑥  

𝑦  
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Tableau N°1 : Matériaux utilisables en mécanique générale 
 

 
Figure N°3 : Facteur de forme en cisaillement 

CORRECTION 

Question N°1 :  Le BAME donne : 

 
{𝜏𝐴}𝐴 = {

𝑋𝐴 −
𝑌𝐴 −
− 0

}

𝐴

 {𝜏𝐵}𝐵 = {
𝑋𝐵 −
0 −
− 0

}

𝐵

 {𝜏𝐶}𝐶 = {
0 −
−𝐹 −
− 0

}

𝐶

 

 On transpose l’ensemble des torseurs au point A (car ce point comporte le plus 
grand nombre d’inconnues). Ainsi : 

 
{𝜏𝐴}𝐴 = {

𝑋𝐴 −
𝑌𝐴 −
− 0

}

𝐴

 {𝜏𝐵}𝐴 = {
𝑋𝐵 −
0 −
− 700 ∙ 𝑋𝐵

}

𝐴

 {𝜏𝐶}𝐴 = {
0 −
−𝐹 −
− −700 ∙ 𝐹

}

𝐴

 

 L’application du PFS donne : 

{
𝑋𝐴 + 𝑋𝐵 = 0
𝑌𝐴 − 𝐹 = 0

700 ∙ 𝑋𝐵 − 700 ∙ 𝐹 = 0
→ {

      𝑋𝐴 = −𝐹 = −500𝑁
𝑋𝐵 = 𝐹 = 500𝑁
𝑌𝐴 = 𝐹 = 500𝑁

 

Question N°2 : Il est possible de modéliser l’axe de la roue de la façon suivante : 

 

Le calcul du torseur de section donne sur le 
tronçon ]AB[ : 

{𝜏𝑖𝑛𝑡}𝐺1 =

{
 
 

 
 
0 0

−
𝐹

2
0

𝐹

2
0
}
 
 

 
 

𝐺1

 

Sur le tronçon ]BC[ : 

 

{𝜏𝑖𝑛𝑡}𝐺2 =

{
 
 

 
 
0 0

−
𝐹

2
0

𝐹

2
0
}
 
 

 
 

𝐺2

 

𝑥  

𝑦  

𝑧  A 

B 

F 

F 
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Remarque : La distance entre les appuis et le point d’application de la charge est ici 
amplifiée pour une meilleure compréhension. Toutefois, sur le modèle réel, cette 
distance doit être la plus faible possible afin d’éviter l’apparition d’un moment 
fléchissant (le dimensionnement ne serait plus le même). 

Le torseur de section fait apparaitre deux termes de cisaillement, un en Ty et un 
autre en Tz. Il convient alors de rechercher un chargement équivalent pour effectuer 
le dimensionnement. Pour cela, utilisons le théorème de Pythagore : 

𝑇𝑒𝑞 = √𝑇𝑦
2 + 𝑇𝑧

2 = √(−500)2 + 5002 = 707,1 𝑁 

Ainsi : 

𝜏𝑚𝑜𝑦 =
𝑇𝑒𝑞

2𝑆
=
707,1 ∙ 2

𝜋 ∙ 102
= 3,2𝑀𝑃𝑎 

Pour obtenir la contrainte de cisaillement max, il convient d’utiliser le facteur de 
forme d’une section cylindrique (ici λ=4/3). Ainsi : 

𝜏𝑚𝑎𝑥 = 𝜆 ∙ 𝜏𝑚𝑜𝑦 = 𝜆 ∙
𝑇𝑒𝑞
2𝑆

=
4

3
∙
707,1 ∙ 2

𝜋 ∙ 102
= 4,3𝑀𝑃𝑎 

 

Question N°3 :  Ici tous les matériaux pourraient convenir car la contrainte de cisaillement dans 
l’axe de roue est très faible. Pour le S235 cela représente un coefficient de sécurité 
de : 

𝑠 =
135

4,3
= 31,5 
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Problèmes de synthèse 
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 Problème N°27 : Etude d’un vélo  

 

Partie N°1 : Etude du cadre 

On considère la modélisation plane suivante (figure N°1) représentant la structure du cadre 

formée par l’assemblage de deux triangles équilatéraux de 70cm de côté : 

 

Figure N°1 : Modélisation du cadre de vélo 

Le cadre est fabriqué à partir de tube circulaire en alliage d’aluminium 1050A dont les 

caractéristiques sont : 

- Epaisseur des parois du tube (e[mm]) : 2 

- Limite d’élasticité du matériau (Re [MPa]) : 35 

- Module de Young du matériau (E[GPa]) : 70 

Le cahier des charges retenu pour la conception du cadre impose un coefficient de sécurité de 5.  

Répondez aux questions suivantes : 

Question N°1 : Montrez que les actions de liaison aux points A et D sont : 
 

{τA}A,R1 = {
0 0

666,7 0
0 0

}

A,R1

[N;Nm] {τD}D,R1 = {
−500 0
333,3 0
0 0

}

D,R1

[N;Nm] 

 

Question N°2 : A l’aide de la méthode de Ritter, donnez les efforts intérieurs dans chacune 
des barres. Consignez vos résultats dans un tableau.  

Question N°3 : Calculez le diamètre extérieur du tube à implanter sachant que la barre ⑤ est 
soumise à un effort normal de 1000N (résultat indépendant des questions 
précédentes).  

Question N°4 : Choisir dans le catalogue constructeur suivant un diamètre normalisé de tube 
qui pourrait convenir à la réalisation de la barre ⑤.  

 

 

Tube circulaire - Alliage d’aluminium 1050A 

A 

B 

P=1000N 

𝑥1⃗⃗⃗⃗  

𝑦1⃗⃗⃗⃗  
C 

D 

① 

② 

③ 

④ 

⑤ 

F=500N 
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Dimensions (Øext x épaisseur [mm]) : 20x1 20x2 22x1 22x2 25x1 25x2 30x1 30x2 

Tableau N°1 : Dimensions normalisées (source : Vignon Choquit.fr) 
 

CORRECTION 

Question N°1 :  Le BAME donne : 

 
{𝜏𝐷}𝐷 = {

𝑋𝐷 −
𝑌𝐷 −
− 0

}

𝐷

 {𝜏𝐴}𝐴 = {
0 −
𝑌𝐴 −
− 0

}

𝐴

 {𝜏𝐶}𝐶 = {
500 −
−1000 −
− 0

}

𝐶

 

 On transpose l’ensemble des torseurs au point D (car ce point comporte le plus grand 
nombre d’inconnues). Ainsi : 

 
{𝜏𝐷}𝐷 = {

𝑋𝐷 0
𝑌𝐷 0
0 0

}

𝐷

 {𝜏𝐴}𝐷 = {
0 0
𝑌𝐴 0
0 −1050 ∙ 𝑌𝐴

}

𝐷

 {𝜏𝐶}𝐷 = {
500 0
−1000 0
0 700 ∙ 103

}

𝐷

 

 L’application du PFS donne : 

{

𝑋𝐷 + 500 = 0
𝑌𝐴 + 𝑌𝐷 − 1000 = 0

−1050 ∙ 𝑌𝐴 + 700 ∙ 10
3 = 0

→ {
      𝑋𝐷 = −500𝑁
𝑌𝐴 = 666,7𝑁
𝑌𝐷 = 333,3𝑁

 

Question N°2 : Les efforts normaux dans les barres sont : 
 

Barre ① : -769,8N - Effort de compression. Coupure 1 autour de A 

Barre ② : 384,9N - Effort de traction. Coupure 1 autour de A 

Barre ③ : -384,9N - Effort de compression. Coupure 3 autour de B 

Barre ④ : -692,5N - Effort de compression. Coupure 2 autour de D 

Barre ⑤ : 384,9 - Effort de traction. Coupure 2 autour de D  

 

Question N°3 et 4 : L’effort normal dans le tube N°5 vaut Nx⑤ = 1000N. Ainsi : 

Re
s
=

4 ∙ Nx

π ∙ (Dext
2 − Dint

2 )
 

Or :  

Dint = Dext − 2 ∙ e 

Ainsi :  

Re
s
=

Nx

π ∙ (e ∙ Dext − e
2)

 

Finalement :  

Dext =
Nx ∙ s

π ∙ Re ∙ e
+ e 

L’application numérique donne (Nx=1000N, e=2mm, Re=35MPa, s=5) : 

Dext = 24,7mm 

On retient donc un tube de 25x2mm. 
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Partie N°2 : Installation du porte-bidon 

On se propose à présent de vérifier l’influence d’un trou dans la barre ⑤ servant à l’installation 

d’un support de bidon (figure N°2). Ce trou permet de fixer le porte bidon à l’aide d’une vis. 

 

Figure N°2 : Vue du support de bidon 

Dans cette partie, la barre ⑤ est réalisée à partir d’un tube circulaire de diamètre 25mm et 

d’épaisseur 2,5mm. Le matériau employé est le même que celui utilisé dans la partie N°1. Soit la 

modélisation suivante du problème : 

 

Figure N°3 : Modélisation pour l’implantation du porte bidon 

Répondez aux questions suivantes : 

Question N°5 : Déterminez le coefficient de concentration de contrainte à partir de l’annexe 
N°1. 

Question N°6 : Déterminez la contrainte nominale au sein de la barre ⑤ 

Question N°7 : Déterminez la contrainte maximale au sein de la barre ⑤  

Question N°8 : Conclure quant au dimensionnement de la barre ⑤ (Rappel : coefficient de 
sécurité adopté égal à 5) et si nécessaire, proposer une solution 
technologique différente pour répondre à la problématique de fixation du 
support de bidon.  

CORRECTION 

Question N°5 :  Il convient de calculer : 

- 
Dint

Dext
=

20

25
= 0,8 

6,25mm 

1000N 1000N 

2
5

m
m

 

2
0

m
m
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- 
a

Dext
=

6,25

25
= 0,25 

Graphiquement, on trouve Kt = 3,6 

Question N°6 : La contrainte nominale dans la barre N°5 vaut : 

𝜎𝑛𝑜𝑚 =
4 ∙ Nx

π ∙ (Dext
2 −Dint

2 )
 

L’application numérique donne (Nx=1000N, Dext=25mm, Dint=20mm) : 

σnom = 5,7MPa 

Question N°7 : La contrainte maximale au bord du trou est donnée par : 

σmax = Kt ∙ σnom 

L’application numérique donne : 

σmax = 20,4MPa 

Question N°8 : La contrainte au sein de la barre N°5 ne répond pas aux contraintes du cahier 
des charges. En effet : 

σmax >
Re
s

 

On pourrait utiliser par exemple des colliers de serrage ou de la colle pour 
fixer se porte bidon.  

Partie N°3 : Etude de l’axe supportant la roue arrière 

On se propose dans cette partie de dimensionner l’axe supportant la roue arrière du vélo. Pour ce 

faire, on considère que la roue est montée en chape comme illustré au travers de la figure ci-

dessous (figure N°4).  

 

Figure N°4 : Montage de la roue arrière d’un vélo 
 

Le matériau utilisé pour réaliser l’axe a les caractéristiques suivantes : 

- Limite d’élasticité en cisaillement (Reg [MPa]) : 70 

- Module de Young du matériau (E [GPa]) : 210 

- Coefficient de Poisson : 0,3 

Le cahier des charges retenu impose les éléments suivants :  

- Charge max au centre de la liaison (Fliaison[N]) : 2000 

- Coefficient de sécurité : 5 
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Répondez aux questions suivantes : 

Question N°9 : Calculez le module de Coulomb du matériau employé pour la réalisation de 
l’axe d’articulation. 

Question N°10 : Indiquez le nombre de surface(s) participant à la cohésion de l’articulation 
(surface(s) cisaillée(s)). 

Question N°11 : Calculez le diamètre minimal de l’axe assurant la bonne tenue de 
l’articulation (facteur de forme λ=4/3).  

CORRECTION 

Question N°9 :  Le module de Coulomb est donné par les deux autres constantes du 
matériau. A savoir : 

G =
E

2(1 + ν)
 

L’application numérique donne (E=210GPa, ν=0,3) : 

G = 80,8GPa 

Question N°10 et 11 : Il s’agit d’un montage en chape, il y a donc deux surfaces cisaillées. De 
plus : 

Reg

s
= λ ∙

2T

π ∙ D2
 

Finalement : 

D = √λ ∙
2 ∙ s ∙ T

Reg ∙ π
 

L’application numérique donne (λ=4/3, s=5, Reg=70MPa, T=2000N) : 

D = 11mm 

 

  



        Problèmes de dimensionnement des structures 

        Version N°4   Page 73 sur 79 

Annexe N°1 : Détermination d’un coefficient de concentration de contrainte 
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 Problème N°28 : Etude d’une grue   

Une grue de type GTMR (Grue à Tour à Montage 

Rapide) (figure N°1) est un appareil de manutention 

que l’on retrouve essentiellement sur des chantiers 

de construction d’infrastructures ou de bâtiments. 

Elle se caractérise par une forte capacité de 

chargement ainsi qu’une grande modularité. En 

effet il est possible d’accroître très facilement la 

hauteur du mât afin d’obtenir une plus grande 

hauteur sous crochet. On se propose d’étudier le 

comportement sous charge de la grue afin de 

dimensionner sa partie haute (tirants, flèche et contre-flèche).  

Pour se faire, on considère la modélisation suivante :  
 

 
Figure N°2 : Modélisation de la partie haute de la grue 

 Le cahier des charges retenu pour la conception de la grue est le suivant : 

- Limite d’élasticité du matériau (Re [MPa]) : 500 

- Module de Young du matériau (E [GPa]) : 210 

- Module de Coulomb du matériau (G [GPa]) : 82 

- Coefficient de sécurité adopté : 3 

- Charge en bout de flèche (Fgrue[kN]) : 15 

Partie N°1 : Etude de la structure de la grue 

Répondez dans l’ordre aux questions suivantes : 

Question N°1 : Déterminez les actions de liaison au point A et B. 

Question N°2 : A l’aide de la méthode de Ritter, donnez les efforts intérieurs dans chacune 
des barres. 

Question N°3 : Sachant que le tirant ③ composant cette grue est une barre cylindrique, 
déterminez son diamètre afin de respecter le cahier des charges. 

Question N°4 : Déterminez la longueur après déformation du tirant ③ (2 chiffres après la 
virgule). 

Question N°5 : Déterminez la variation de diamètre du tirant ③ après déformation (4 
chiffres après la virgule). 

 

 

 

Figure N°1 : Vue d’une grue type GTMR 

A 
B 

C 

D 

① ② 

③ ④ 

⑤ 

15m 4m 

𝑥  

𝑦  

Mât 

Flèche 

Contre flèche 

Tirant 

Crochet 

18° 

50,6° 

Fgrue 

Tirant 
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CORRECTION 

Question N°1 :  Le BAME donne : 

 
{𝜏𝐴}𝐴 = {

0 −
𝑌𝐴 −
− 0

}

𝐴

 {𝜏𝐵}𝐵 = {
𝑋𝐵 −
𝑌𝐵 −
− 0

}

𝐵

 {𝜏𝐶}𝐶 = {
0 −

−15000 −
− 0

}

𝐶

 

 On transpose l’ensemble des torseurs au point B (car ce point comporte le plus 
grand nombre d’inconnues). Ainsi : 

 
{𝜏𝐵}𝐵 = {

𝑋𝐵 0
𝑌𝐵 0
0 0

}

𝐵

 {𝜏𝐴}𝐵 = {
0 0
𝑌𝐴 0
0 −4 ∙ 𝑌𝐴

}

𝐵

 
{𝜏𝐶}𝐵

= {
0 0

−15000 0
0 −225 ∙ 103

}

𝐵

 

 L’application du PFS donne : 

{

𝑋𝐵 = 0
𝑌𝐴 + 𝑌𝐵 − 15000 = 0

−4 ∙ 𝑌𝐴 − 225 ∙ 10
3 = 0

→ {

      𝑋𝐷 = 0𝑁
𝑌𝐴 = −56250𝑁
𝑌𝐵 = 71250𝑁

 

Question N°2 : Les efforts normaux dans les barres sont : 
 

Barre ① : ≈ -46204,3N - Effort de compression. Coupure 2 autour de A 

Barre ② : ≈ -46165,3N - Effort de compression. Coupure 1 autour de C 

Barre ③ : ≈ 48541N - Effort de traction. Coupure 1 autour de C 

Barre ④ : ≈ 72793,5N - Effort de traction. Coupure 2 autour de A 

Barre ⑤ : -71250N – Effort de compression. Coupure 3 autour de B 
 

Question N°3 : L’effort normal dans la barre vaut Nx③ = 48541N. Ainsi : 

Re
s
=
4 ∙ Nx
π ∙ D2

 

Finalement :  

D = √
4 ∙ Nx ∙ s

π ∙ Re
 

L’application numérique donne (Nx=48541N, Re=500MPa, s=3) : 

D = 19,3mm 

On pourrait donc retenir une barre de diamètre normalisé de 20mm 

Question N°4 : On donne la loi de HOOKE: 

𝜎𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
4 ∙ Nx
π ∙ D2

= E ∙
(L③ − L0−③)

L0−③
 

Ainsi : 

L③ =
4 ∙ Nx ∙ L0−③

π ∙ D2 ∙ E
+ L0−③ 

De plus : 

L0−③ =
L0−②

cos𝛼
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Finalement : 

L③ =
4 ∙ Nx ∙ L0−②

π ∙ D2 ∙ E ∙ cos 𝛼
+
L0−②

cos 𝛼
 

L’application numérique donne (L0-②=15 000mm, Nx=48541N, D=19,3mm, 
α=18°, E=210 000MPa) : 

L③ = 15 784,39𝑚𝑚 

Question N°5 : Le coefficient de Poisson est donné par : 

𝜈 = −
𝜀𝑡
𝜀𝑙
= −

(D③ − 𝐷0−③) ∙ L0−③

(L③ − L0−③) ∙ 𝐷0−③
 

Ainsi :  

[D③ −D0−③] = −
ν ∙ (L③ − L0−③) ∙ D0−③

L0−③ ∙
 

De plus : 

ν =
E

2 ∙ G
− 1 

Finalement : 

[D③ − D0−③] = − [(
E

2 ∙ G
− 1) ∙

(L③ − L0−③) ∙ D0−③

L0−③ ∙
] 

L’application numérique donne : 

[D③ − D0−③] = −4,277 ∙ 10
3mm 

Partie N°2 : Etude de la liaison du tirant et de la flèche 

On se propose d’étudier la fixation du tirant ③ sur la 

flèche ②. Cette dernière est réalisée à l’aide d’un 

montage en chape (figure N°3). Ce montage se compose 

d’une rotule reliée au tirant, d’une chape solidaire de la 
flèche et d’un axe soumis à du cisaillement pur. Ce 

dernier est réalisé dans un acier dont la limite élastique 

en cisaillement est de 100MPa, le module de Coulomb de 

80,77GPa et υ=0,3. Le coefficient de sécurité adopté 

pour le dimensionnement est identique à celui utilisé 

précédemment.  

L’effort sur le tirant ③ sera considéré comme étant égal 

à 200kN (résultat indépendant des questions 

précédentes).  

 

Question N°6 : Indiquez le nombre de surface(s) participant à la cohésion de l’articulation 
(surface(s) cisaillée(s)). 

Question N°7 : D’après les caractéristiques du matériau, quelle est la contrainte maximale 
admissible en cisaillement. 

Question N°8 : Calculez le diamètre minimal de l’axe assurant la bonne tenue de 
l’articulation.  

Question N°9 : Calculez l’angle de distorsion lorsque l’axe est sollicité. 

 

Figure N°3 : Montage en chape 

Axe 

200kN 

Flèche 

Tirant ③ 
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Il convient à présent de vérifier le dimensionnement de la liaison rotule/tirant ③. Pour ce faire, 

on considère la géométrie suivante : 

 

Figure N°4 : Vue de l’usinage du tirant ③ permettant d’accueillir la rotule 

 

Question N°10 : Calculez au niveau de l’épaulement : La contrainte nominale, le coefficient 
de concentration de contrainte (à l’aide de l’annexe N°1) ainsi que la 
contrainte max induite par cette singularité géométrique. Calculez alors le 
nouveau coefficient de sécurité de cette liaison sachant que la limite 
d’élasticité du matériau est de 500MPa. 

CORRECTION 

Question N°6 :  Le tirant est monté en chape, ainsi il y a deux surfaces qui participent à la 
cohésion de l’articulation.  

Question N°7 : La contrainte maximale admissible est donnée par : 

τmax =
τe
s
=
100

3
= 33,33MPa 

Question N°8 : On donne : 

τe
s
=

2T

π ∙ D2
 

Finalement : 

D = √
2 ∙ s ∙ T

τe ∙ π
 

L’application numérique donne (s=3, τe=100MPa, T=200 000N) : 

D = 61,8mm 

Question N°9 : On donne : 

τ = G ∙ γ =
2T

π ∙ D2
 

Donc : 

γ =
2T

G ∙ π ∙ D2
 

L’application numérique donne : 

γ = 4,13 ∙ 10−4rad 

 

Ø45mm 

R3,75mm 

Ø30mm 

200kN 200kN 



        Problèmes de dimensionnement des structures 

        Version N°4   Page 78 sur 79 

Question N°10 : La contrainte nominale au pied de la singularité géométrique vaut : 

𝜎𝑛𝑜𝑚 =
4 ∙ Nx
π ∙ D2

= 282,9MPa 

Le coefficient de concentration de contrainte est déterminé en calculant les 
paramètres ci-dessous : 

- 
𝑟

t
=

3,75

7,5
= 0,5 

- 
d

D
=

30

45
= 0,67 

Graphiquement, on trouve Kt = 1,8 

Ainsi, la contrainte maximale vaut : 

σmax = Kt ∙ σnom = 509,2MPa 

Ben là… le tirant de la grue plastifie !!!! 
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Annexe N°1 - Arbre épaulé - Traction 

 

 

 

 


