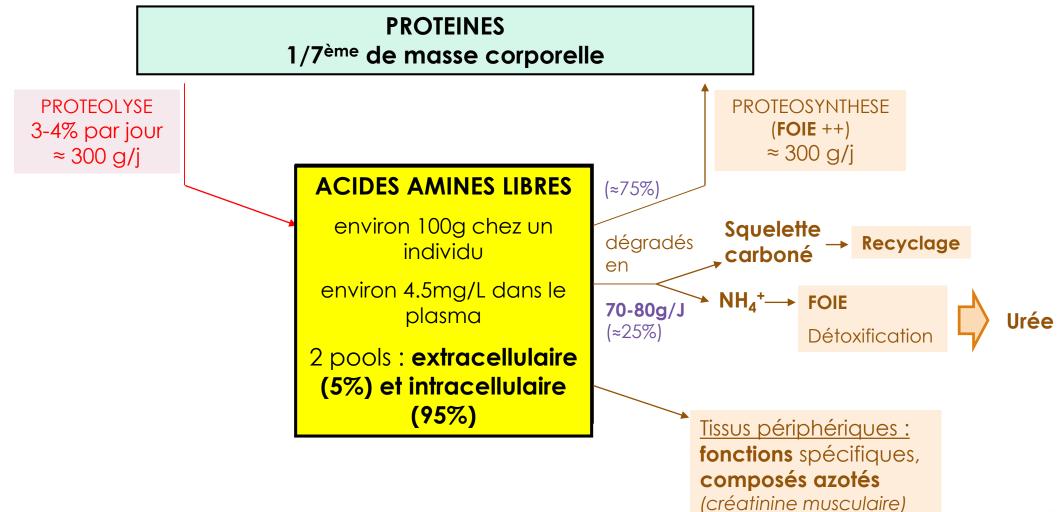
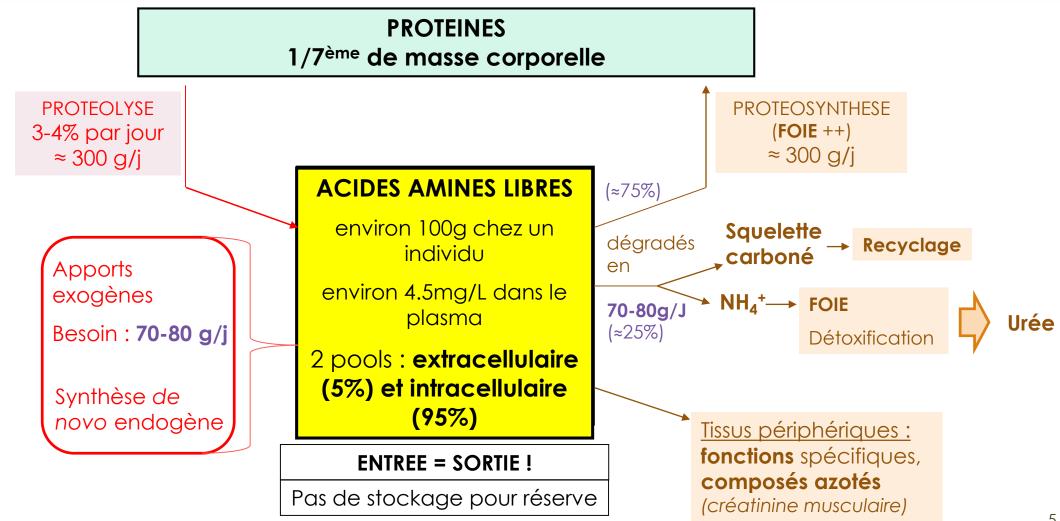
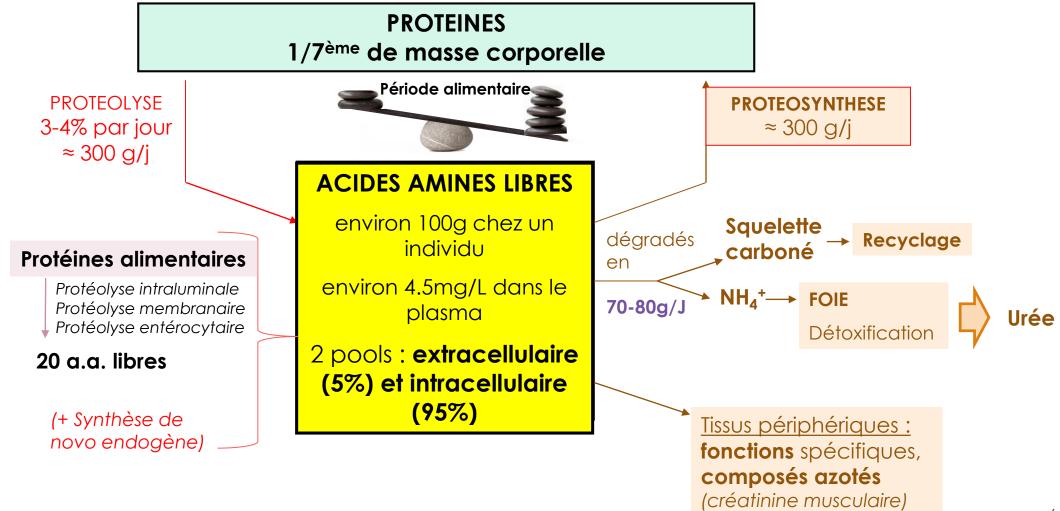


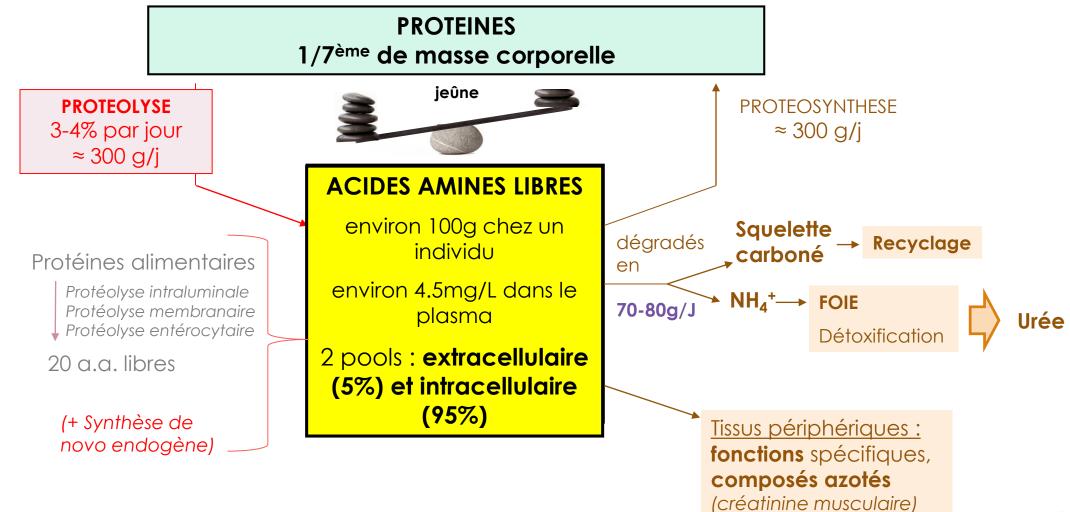
SÉMIOLOGIE BIOLOGIQUE DES PROTÉINES, SYNDROME INFLAMMATOIRE

UE BMCP 3 NOVEMBRE 2025


Dr. Clément Janot


RÉFÉRENTIELS


- Item <u>185</u> : **Réaction inflammatoire: Aspects biologiques et cliniques. Conduite à tenir**
- SDD <u>186</u>, <u>193</u>, <u>203</u>, <u>210</u>, <u>211</u>
- Objectifs de ce cours
 - Comprendre les principales situations physiopathologiques de variations des protéines (plasmatiques)
 - Savoir interpréter un bilan biologique d'études des protéines : dosages et électrophorèse
 - Connaître les marqueurs biologiques du syndrome inflammatoire.


PLAN

- Métabolisme des protéines
 - Vue d'ensemble
 - Rappels
 - Absorption des protéines alimentaires
 - Protéolyse cellulaire
- Examens biologiques : protéines totales
 - Généralités
 - Variations physiopathologiques
- Examens biologiques : électrophorèse des protéines plasmatiques / sériques (EPP/EPS)
 - Généralités
 - Profils classiques de l'EPS
- Examens biologiques : dosages des protéines spécifiques de l'inflammation
 - Les protéines de l'inflammation
 - Variations physiopathologiques

MÉTABOLISME DES PROTÉINES RAPPELS

• acides aminés,...

$$\begin{array}{c|c} & \text{NH}_2\text{--CH} -\text{--COOH} \\ \hline \\ \text{Carbone } \alpha & \\ \hline \\ R \end{array}$$

· ... protéines

Reliés entre eux par une liaison peptidique (fonction amide)

MÉTABOLISME DES PROTÉINES RAPPELS SÉMANTIQUES

- **Peptide**: <50 a.a.
 - Oligopeptide: <20 a.a.
 - Polypeptide: >20 a.a.
 - dipeptide, tripeptide, tetrapeptide,....
- **Protéine** : ≥50 a.a.
- Holoprotéine : 100% de structure de nature protéique
- Hétéroprotéine : protéine + élément non protéique
 - L' « apoprotéine » + le groupement « prosthétique »
 - Ex: hémoglobine (hème); glycoprotéines (chaines osidiques).

ABSORPTION DES PROTÉINES ALIMENTAIRES

Protéines alimentaires

- Unique source d'azote
- Unique source d'acide aminés essentiels
 Leu Thr Lys Trp Phe Val Met lle

Protéines alimentaires

Protéolyse intraluminale Protéolyse membranaire Protéolyse entérocytaire

20 a.a. libres

Digestion des protéines

- Ne peuvent pas passer la barrière intestinale en l'état
- Doivent être dégradées pour libérer des acides aminés libres : rôle des protéases
- 3 étapes

ABSORPTION DES PROTÉINES ALIMENTA<u>IRES</u>

Protéolyse intraluminale

Etape gastrique

Protéines alimentaires

Protéolyse intraluminale

Protéolyse membranaire Protéolyse entérocytaire

20 a.a. libres

Protéolyse non spécifique

ABSORPTION DES PROTÉINES ALIMENTA<u>IRES</u>

Protéolyse intraluminale

Etape entérique

Protéines alimentaires

Protéolyse intraluminale

Protéolyse membranaire Protéolyse entérocytaire

20 a.a. libres

- Précurseurs enzymatiques d'origine pancréatiques:
 - Trypsin<u>ogène</u>
 - Chymotrypsin<u>ogène</u>
 - <u>Pro</u>carboxypeptidase
 - Proélastase

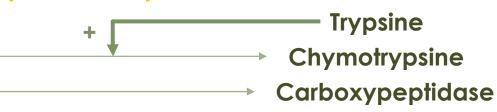
Entéropeptidase duodénale

Trypsine

ABSORPTION DES PROTÉINES ALIMENTA<u>IRES</u>

Protéolyse intraluminale

Etape entérique


Protéines alimentaires

Protéolyse intraluminale

Protéolyse membranaire Protéolyse entérocytaire

20 a.a. libres

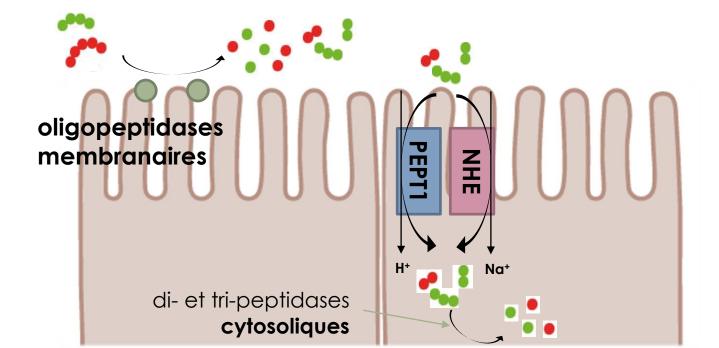
- Précurseurs enzymatiques d'origine pancréatiques:
 - Trypsin<u>ogène</u>
 - Chymotrypsin<u>ogène</u>
 - <u>Pro</u>carboxypeptidase
 - Proélastase

→ Elastase

- Protéolyses spécifiques (spécificité d'action)
- Obtention d'a.a. libres et d'oligopeptides

ABSORPTION DES PROTÉINES ALIMENTA<u>IRES</u>

• Protéolyse membranaire et entérocytaire


Etape entérique

Protéines alimentaires

Protéolyse intraluminale

Protéolyse membranaire
Protéolyse entérocytaire
20 a.a. libres

 Clivage des oligopeptides à la membrane des entérocytes + absorption
 Transport actif secondaire

ABSORPTION DES PROTÉINES ALIMENTAIRES

- Absorption sanguine des a.a. libres
 via la membrane basale des entérocytes
 - Passent par transport passif
 - Rejoignent la veine porte puis le foie (3/4 captés pour synthèse ou dégradation)
- Dans la circulation
 - Sous forme libre
 - Glutamine: principal a.a.
 libre circulant

ACIDES AMINES LIBRES

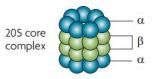
2 pools: extracellulaire (5%),

et intracellulaire (95%)

- 2 pools: passage du compartiment extra vers intracellulaire → distribution tissulaire (rein, muscles++)
- Elimination rénale (minoritaire), réabsorption à 90%

- Protéolyse = catabolisme protéique
 - Formation d'a.a. libres à partir de la masse protéique de l'organisme
 - Source d'énergie via leur dégradation et recyclage du squelette carboné des a.a. -> cf. cours dédié
 - Régulation de l'expression des protéines
 - Synthèse d'autres protéines / Renouvellement
 - Présentation d'antigène
 - Source d'azote, d'a.a. non essentiels, ...

• Où ?

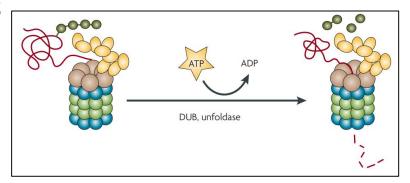

- Cytoplasmique (mineur)
- Structures cellulaires dédiées (majeur): dans le protéasome (80-90%) et le lysosome (10-20%)

Rôle du protéasome

Complexe cœur 20S

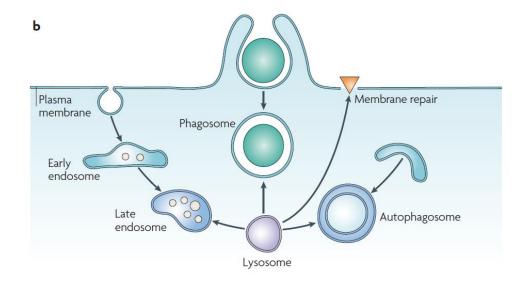
- Anneaux Alpha: lie les complexes reg

- Anneaux Beta : activité protéolytique



+

Complexes **régulateurs** 19S et 11S


- Reconnaissance des protéines poly-ubiquitinylées
- Entrent dans le protéasome

 > sont dégradées

- Rôle du protéasome
 - Principal acteur du catabolisme protéique chez les eucaryotes
 - Cytoplasme et noyau
 - Système de régulation rapide de l'expression des protéines à demivie courte
 - Système de protection vis-à-vis des protéines anormales/tronquées (variations génétiques) → marque poly-ubiquitine
 - Consommateur d'énergie (action ATPase du complexe régulateur 19S)

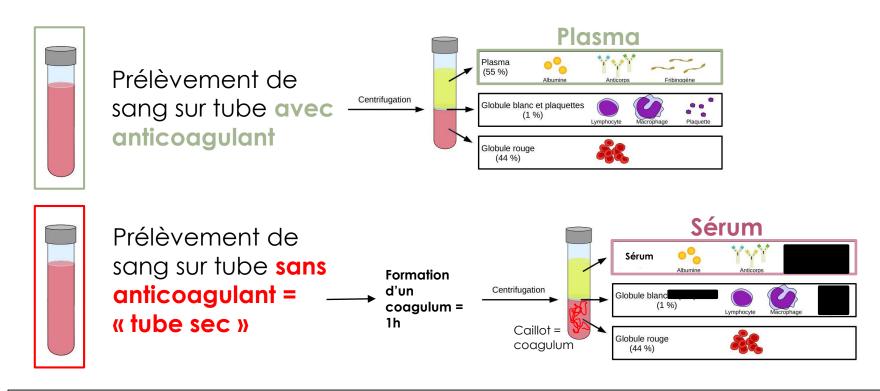
- Rôle du lysosome
 - Organelle dynamique formée par une membrane lipidique
 - Fusionne avec d'autre types de vésicules pour libérer des hydrolases acides
 - Phagocytose
 - Pinocytose
 - Autophagie
 - Système de dégradation lente (protéines à demi-vie longue)

TAKE HOME MESSAGES

Le pool d'acide aminé libre est faible en masse (100g), quotidiennement renouvelé, et ne constitue pas de réserve (pas de stock d'a.a.)

Source principales d'a.a.: apports alimentaires et protéolyse intracellulaire

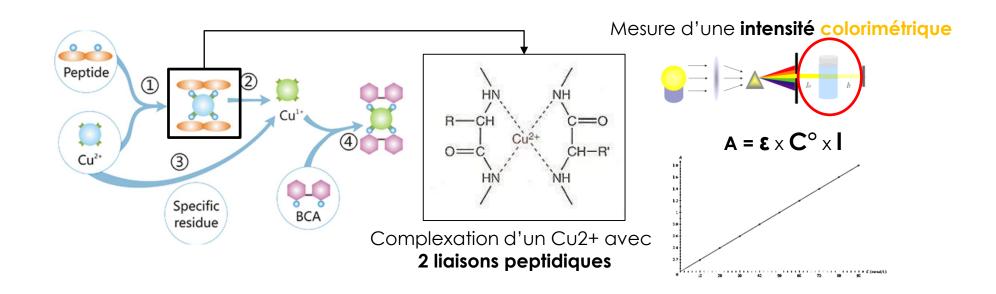
<u>Apports alimentaires</u>: absorption via protéolyse intraluminale, membranaire, entérocytaire (3 étapes)

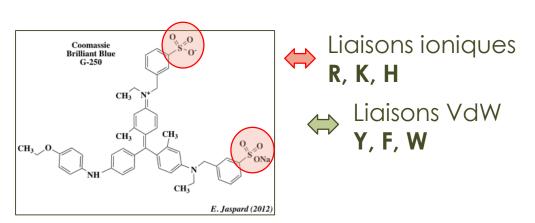

<u>Protéolyse intracellulaire</u>: protéasome et lysosome

PLAN

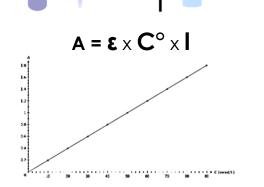
- Métabolisme des protéines
 - Vue d'ensemble
 - Rappels
 - Absorption des protéines alimentaires
 - Protéolyse
- Examens biologiques : protéines totales
 - Généralités
 - Variations physiopathologiques
- Examens biologiques : électrophorèse des protéines plasmatiques / sériques (EPP/EPS)
 - Généralités
 - Profils classiques de l'EPS
- Examens biologiques : dosages des protéines spécifiques de l'inflammation
 - Les protéines de l'inflammation
 - Variations physiopathologiques

- Au laboratoire on peut,...
 - Doser la concentration totale en protéines ou en protides dans le plasma = protéinémie totale / protéinémie / protidémie
 - Réaliser une analyse séparative des protéines sériques ou plasmatiques : électrophorèse des protéines sériques / EPS / EPP
 - Doser la concentration d'une protéine spécifique


- Au laboratoire on peut,...
 - Doser la concentration totale en protéines ou en protides dans le plasma = protéinémie totale / protéinémie / protidémie


Protéines dosées ? Sérum = plasma – protéines de la coagulation (fibrinogène,...)

- Au laboratoire on peut,...
 - Doser la concentration totale en protéines ou en protides dans le plasma = protéinémie totale / protéinémie / protidémie
 - en grammes/litres (g/L)
 - Ensemble hétérogène de protéines, de quantités relatives variables (µg/L, mg/L, g/L,...)
 - 1) Albumine (environ 40g/L)
 - 2) Immunoglobulines (8 à 15g/L)
 - 3) Fibrinogène (2 à 4g/L) (absent du sérum!)


- Méthodes de dosage des protéines totales:
 - Basées sur la formation de complexes cuivreux aux propriétés d'absorbance spectrophotométrique dans le visible
 - Méthode de Biuret (= étape 1 seule)
 - Méthode à l'acide bicinchoninique (BCA, étapes 1+2+4)

- Méthodes de dosage des protéines totales:
 - Basées sur la réaction du bleu de coomassie avec les résidus a.a. aromatiques et basiques = méthode de Bradford
 - Principe colorimétrique similaire

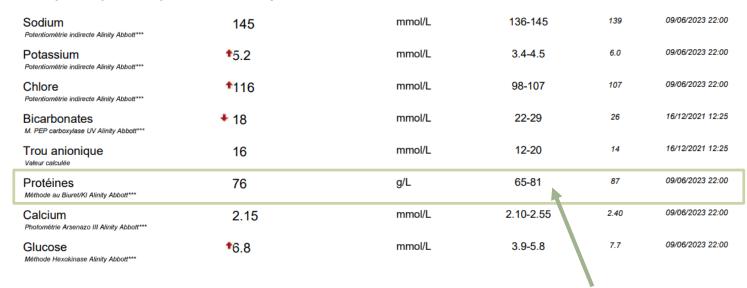
Mesure d'une intensité colorimétrique

Protéinémie totale chez l'adulte

Intervalle de référence : 60-80g/L

- Indications du dosage :
 - Recherche d'un trouble de l'état d'hydratation extracellulaire
 - Atteintes hépatiques
 - Atteintes rénales
 - Suivi des maladies métaboliques et nutritionnelles
- Variations quantitatives :
 - Hyperprotidémie (>80g/L)
 - Hypoprotidémie (<60g/L)
 - Aucun des deux ne définit ni n'est spécifique d'une pathologie

 appréciation
 globale du métabolisme protéique (synthèse/catabolisme ; apport/perte)
- Paramètre plutôt stable chez un individu sain


• Même prélèvement que le ionogramme

DEMANDE N° **0231200022** Reçu le 27/07/2023 01:42

Résultats Unités Valeurs de référence

Plasma (héparine) Echantillon N°: 023120002202 prélevé le 27/07/23 à 01:30

Aspect du plasma hépariné : Non Hémolysé

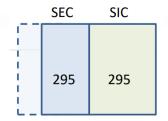
• Le laboratoire **définit son propre intervalle de référence** qui varie selon la méthode de dosage choisie

- Variations physiologiques
 - Pédiatrie : augmentation de la 2è semaine de vie à l'âge adulte (filles = garçons)

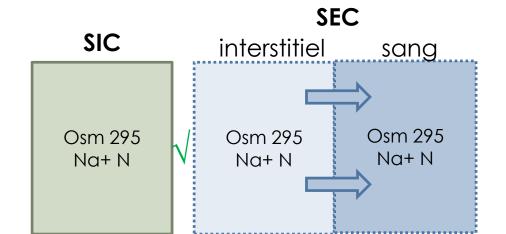
		Female reference interval					Male reference interval					
Analyte	Age	Lower limit	Upper limit	No. of samples	Lower limit confidence interval	Upper limit confidence interval	Lower limit	Upper limit	No. of samples	Lower limit confidence interval	Upper limit confidence interval	
Total protein, g/dL	0 to 14 days	5.3	8.3	158	5.0-5.4	8.0-8.5	5.3	8.3	158	5.0-5.4	8.0-8.5	
	15 days to <1 year	4.4	7.1	152	4.2-4.6	6.9-7.4	4.4	7.1	152	4.2-4.6	6.9-7.4	
	1 to <6 years	6.1	7.5	209	5.8-6.2	7.5–7.6	6.1	7.5	209	5.8-6.2	7.5-7.6	
	6 to <9 years	6.4	7.7	118	6.3-6.5	7.6–7.8	6.4	7.7	118	6.3-6.5	7.6-7.8	
	9 to <19 years	6.5	8.1	588	6.5–6.6	8.0–8.2	6.5	8.1	588	6.5–6.6	8.0–8.2	

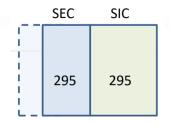
Grossesse: hypoprotidémie physiologique

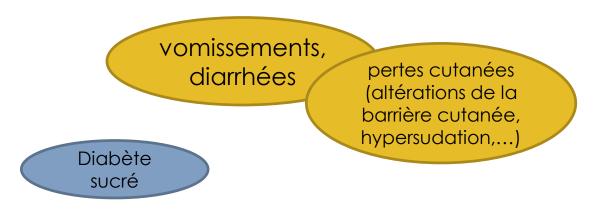
Hyperprotidémie (>80g/L)

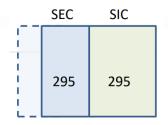

- « Fausses hyperprotidémies »
- Hémolyse du prélèvement
- = Libération du contenu des globules rouges en
- -Protéines
- -Hémoglobine dans le plasma/sérum : **interférence** avec les méthodes colorimétriques

Prélèvement difficile, garrot non retiré




- Hyperprotidémie (>80g/L)
 - 1. Hémoconcentration


- Elle est le signe d'une déshydratation extracellulaire (DEC) = perte commune d'eau et de sel.
- DEC « pure » ou « isotonique » : respectant l'osmolalité plasmatique et le niveau d'hydratation intracellulaire (natrémie normale)

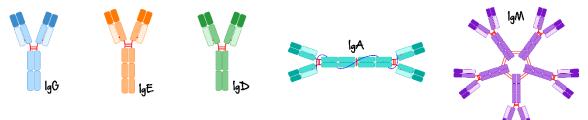

- Hyperprotidémie (>80g/L)
 - 1. Hémoconcentration

- Elle est le signe d'une déshydratation extracellulaire (DEC) = perte commune d'eau et de sel.
- DEC « pure » ou « isotonique » : respectant l'osmolalité plasmatique et le niveau d'hydratation intracellulaire (natrémie normale)
 - Pertes extra-rénales
 - Pertes rénales

- Hyperprotidémie (>80g/L)
 - 1. Hémoconcentration

- Elle est le signe d'une déshydratation extracellulaire (DEC) = perte commune d'eau et de sel.
- DEC « pure » ou « isotonique » : respectant l'osmolalité plasmatique et le niveau d'hydratation intracellulaire (natrémie normale)
- Clinique associée ?
 - Signe du pli cutané
 - Tachycardie
 - Hypotension artérielle
 - Cernes et yeux creusés

- Hyperprotidémie (>80g/L)
 - 1. Hémoconcentration


- Elle est le signe d'une déshydratation extracellulaire (DEC) = perte commune d'eau et de sel.
- DEC « pure » ou « isotonique » : respectant l'osmolalité plasmatique et le niveau d'hydratation intracellulaire (natrémie normale)
- Associée à une hyperalbuminémie (>45g/L) (principale protéine plasmatique circulante)

- Hyperprotidémie (>80g/L)
 - 1. Hémoconcentration
 - 2. Hypergammaglobulinémie

Gammaglobulines (zone gamma dans l'EPS)

- = immunoglobulines (structure protéique)
- = anticorps (capacité de reconnaissance spécifique d'un antigène)

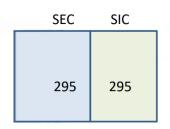
- Distinguer:
 - Hypergamma polyclonales
 - Hypergamma monoclonales
 (suite au paragraphe électrophorèse)

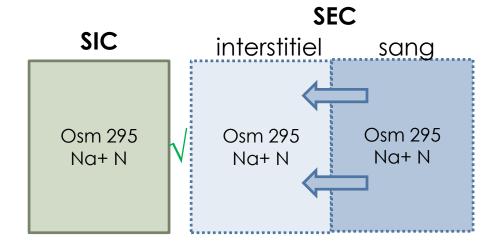
- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - « Fausses hypoprotidémies »
 - Dilution du prélèvement par un liquide de perfusion (soluté, médicaments,...)
 - Typique, et fréquent à l'hôpital ++

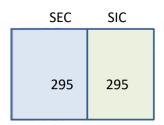
Comment faire?

- Prélever sur le bras controlatéral non perfusé
- Prélever plus bas que la cathéter
- Si pas possible, bien purger son prélèvement (premier tube « pour rien »)

- I. Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - Augmentation du volume liquidien du compartiment extracellulaire (soluté de remplissage,...)


- I. Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)

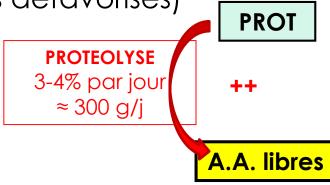




- = chute de la pression oncotique (rôle n°1 de l'albumine)
- HEC « pure » ou « isotonique » = respectant l'osmolalité plasmatique et le niveau d'hydratation intracellulaire (natrémie normale)

- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique
 - Dans les deux cas : signe une hyperhydratation extracellulaire (HEC)
 - = chute de la pression oncotique (rôle n°1 de l'albumine)

- I. Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique
 - Dans les deux cas : signe une hyperhydratation extracellulaire (HEC)


Ædème sous-cutané Anasarque = œdème généralisé (<40g/L)

Epanchement dans les membranes séreuses exemple: **péritoine** (**=ascite**)

- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique

- Insuffisance d'apport
 - Malnutrition voire dénutrition
 - Carences extrêmes en apport protéique
 - Infantile = le « kwashiorkor » (pays les plus défavorisés)
 - Anorexie, fonte musculaire
 - Œdèmes et épanchements

- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique

- Insuffisance d'apport
- Insuffisance hépatocellulaire
 - Cirrhose
 - = Capacité de synthèse du foie altérée

- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique

- Insuffisance d'apport
- Insuffisance hépatocellulaire
- Insuffisance pancréatique
 - Précurseurs enzymatiques d'origine pancréatiques:
 - Trypsin<u>ogène</u>
 - Chymotrypsin<u>ogène</u>
 - <u>Pro</u>carboxypeptidase
 - Proélastase

- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique

- Insuffisance d'apport
- Insuffisance hépatocellulaire
- Insuffisance pancréatique
- Pertes rénales
 - Syndrome néphrotique
 - = fuite des protéines et notamment de l'albumine dans les urines

- Hyperprotidémie (>80g/L)
- II. Hypoprotidémie (<60g/L)
 - I. Hémodilution iatrogène
 - II. Perte ou insuffisance de synthèse protéique

- Insuffisance d'apport
- Insuffisance hépatocellulaire
- Insuffisance pancréatique
- Pertes rénales
- Catabolisme protéique augmenté
 - Chirurgies lourdes, grands brûlés, ...
- Pertes digestives, cutanées ...

DOSAGE DES PROTEINES TOTALES

TAKE HOME MESSAGES

Doser les protéines totales : **méthodes** colorimétriques, basées sur la formation de complexes avec les liaisons peptidique ou les acides aminés (avec le cuivre, ou avec le bleu de coomassie)

Intervalle de ref: 60-80g/L

Les causes de variation:

- Hémoconcentration/Hémodilution : appréciation de l'état d'hydratation extracellulaire
 - Hypergammaglobulinémie
 - Perte ou insuffisance d'apport : pathologie digestives, nutritionnelles, hépatiques, rénales,...

PLAN

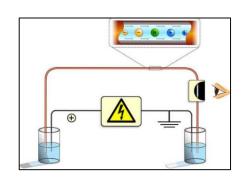
- Métabolisme des protéines
 - Vue d'ensemble
 - Rappels
 - Absorption des protéines alimentaires
 - Protéolyse
- Examens biologiques : protéines totales
 - Généralités
 - Variations physiopathologiques
- Examens biologiques : électrophorèse des protéines plasmatiques / sériques (EPP/EPS)
 - Généralités
 - Profils classiques de l'EPS
- Examens biologiques : dosages des protéines spécifiques de l'inflammation
 - Les protéines de l'inflammation
 - Variations physiopathologiques

EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

• Electrophorèse = principe consistant à faire migrer un mélange de composés au travers d'un gel, sous l'effet de l'application d'un champ électrique entre une anode et une cathode.

Couramment automatisé ++

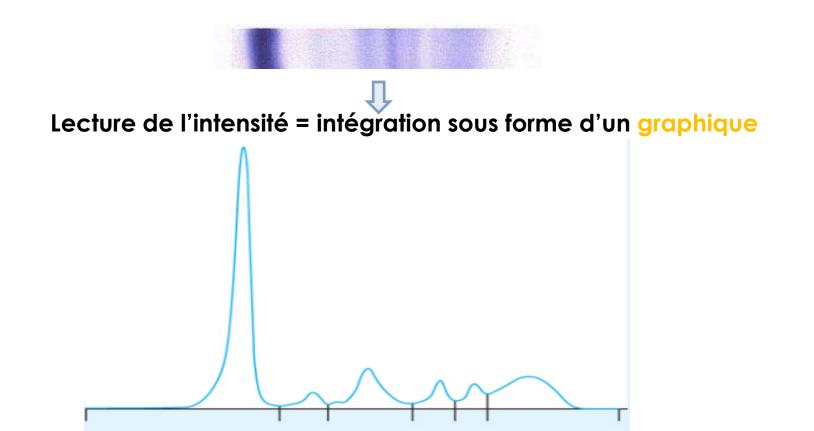
Méthode séparative des protéines totales du sérum


Classiquement sur sérum (EPS)

→ Tube sec

EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

- Electrophorèse = principe consistant à faire migrer un mélange de composés au travers d'un gel, sous l'effet de l'application d'un champ électrique entre une anode et une cathode.
- Couramment automatisé ++



Séparation en fonction de la **charge ionique (pHi)**, et de la **taille** globale des protéines

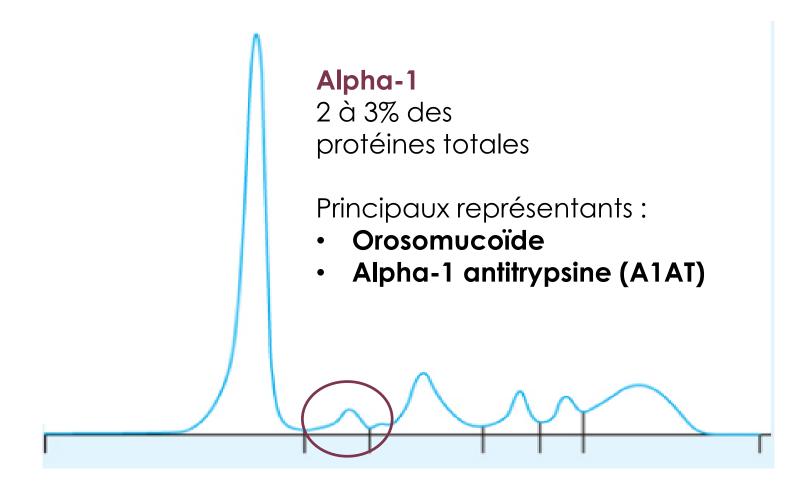
EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

 Electrophorèse = principe consistant à faire migrer un mélange de composés au travers d'un gel, sous l'effet de l'application d'un champ électrique entre une anode et une cathode.

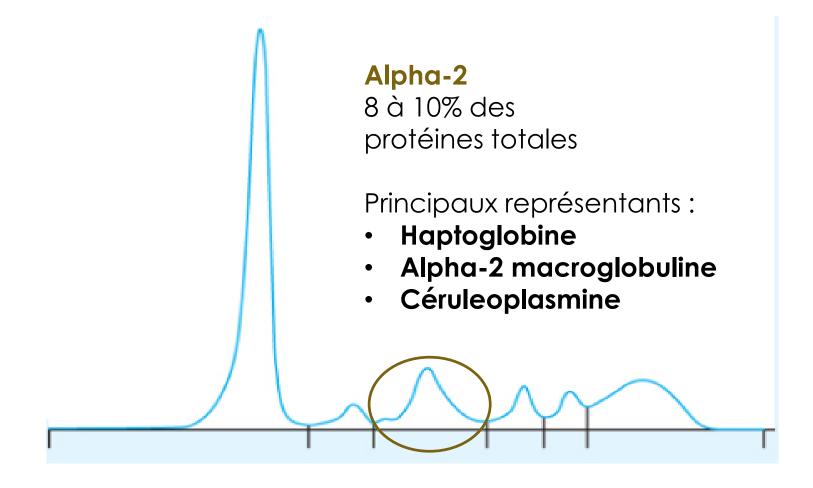
EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

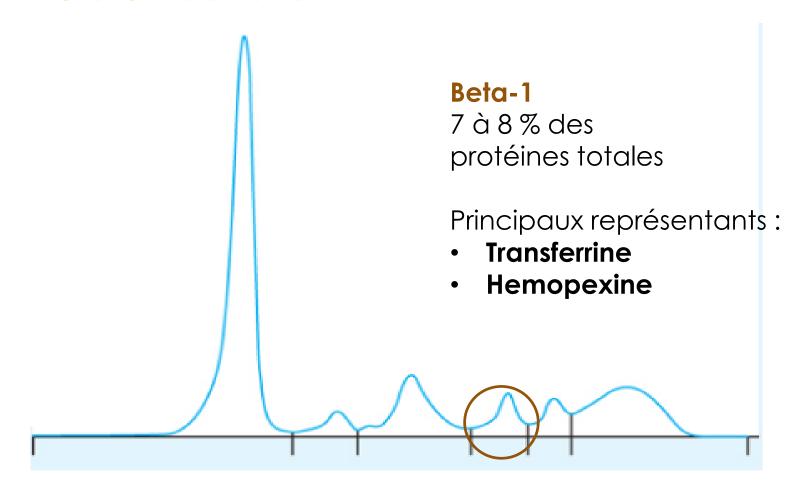
L'albumine

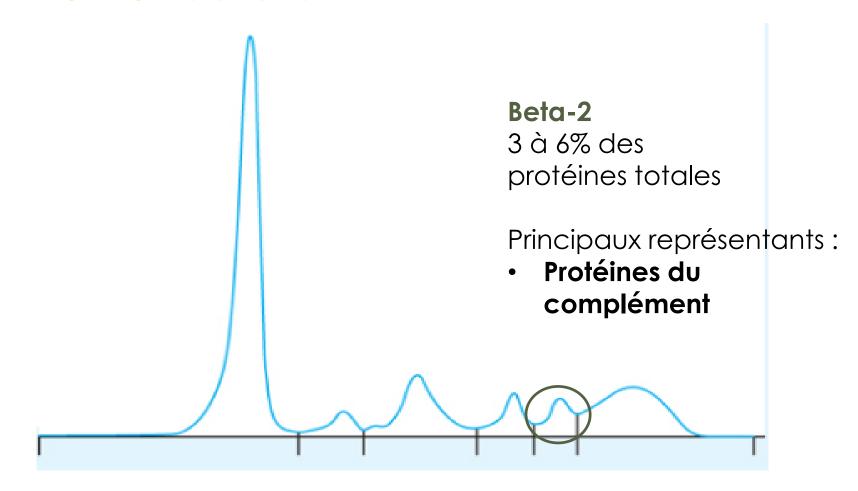

- Synthétisée par le foie
- Rôle: principale protéine circulante, elle assure le maintien de la pression oncotique du secteur sanguin
- + Transporteur non spécifique : lie des composés très variés (hormones, ions, minéraux, médicaments,...)
- Longue demi-vie : 20 jours : variations lentes

EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS


L'albumine

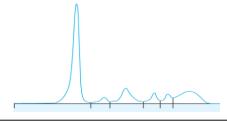
- Marqueur de dénutrition protéino-énergétique: l'albumine est basse chez le patient dénutri.
- Reflet de la fonction hépatique de synthèse des protéines
 - Insuffisance hépatocellulaire : >
- Corrélée à la protidémie totale dans les troubles de l'hydratation extracellulaire
 - HEC (œdèmes, épanchement) : 🔽
 - DEC (perte d'eau + sel) :
- Inflammation chronique : ▶
- Syndrome néphrotique : perte urinaire


EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS


EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

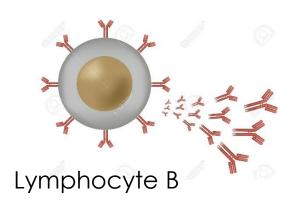
EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

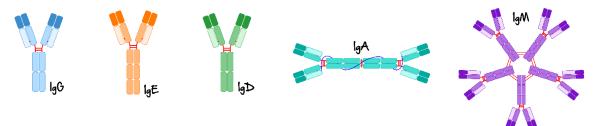


EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

EXPLORATIONS BIOLOGIQUES : EPS GÉNÉRALITÉS

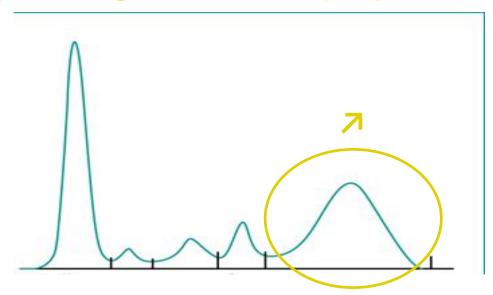

- Rendus par le biologiste avec
 - Une quantification de chacune des fractions (avec intervalles de référence)
 - Une interprétation biologique

Protéines sériques Méthode au Biuret / KI Architect Abbott***	73	g/L	60-80
Albumine %	62.7	%	55.8-66.1
Albumine g/L	45.6	g/L	40.2-47.6
Alpha 1 globulines %	3.5	%	2.9-4.9
Alpha 1 globulines g/L	2.5	g/L	2.1-3.5
Alpha 2 globulines %	8.5	%	7.1-11.8
Alpha 2 globulines g/L	6.2	g/L	5.1-8.5
Béta globulines %	12.8	%	8.4-13.1
Béta globulines g/L	9.3	g/L	6.0-9.4
Gamma globulines %	12.5	%	11.1-18.8
Gamma globulines g/L	9.1	g/L	8.0-13.5


« Profil électrophorétique normal »

1. Les hypergammaglobulinémies

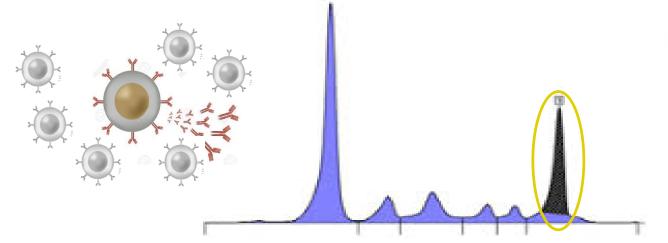
Gammaglobulines (zone gamma dans l'EPS)


- = immunoglobulines (structure protéique)
- = anticorps (capacité de reconnaissance spécifique d'un antigène)

- Distinguer:
 - Hypergamma polyclonales
 - Hypergamma monoclonales
 (suite au paragraphe électrophorèse)

1. Les hypergammaglobulinémies

Hypergammaglobulinémie polyclonale


Large dôme

Etalé sur toute la zone gamma

= stimulation lymphocytaire globale → production de nbreuses immunoglobulines

- Causes:
 - Infections: viroses, parasitoses,
 - Maladies auto-immunes
 - Pathologies inflammatoires chroniques (MICI, sarcoïdose, granulomatose,...)

- 1. Les hypergammaglobulinémies
 - Hypergammaglobulinémie polyclonale
 - Hypergammaglobulinémie monoclonale

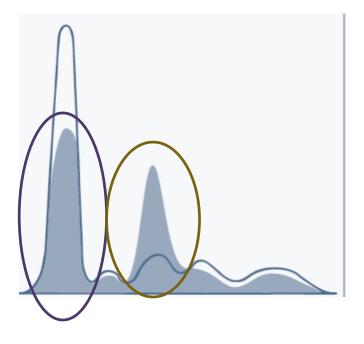


Pic

Etroit au sein de la zone gamma

- Prolifération clonale (maligne) d'un lymphocyte B/plasmocyte produisant une immunoglobuline
- IgA, ou IgG, ou IgM

- 1. Les hypergammaglobulinémies
 - Hypergammaglobulinémie polyclonale
 - Hypergammaglobulinémie monoclonale
 - L'EPS est un test de dépistage de l'hypergammaglobulinémie monoclonale
 - Il se confirme par une immunofixation (qui détermine son isotype G/A/M)


1. Les hypergammaglobulinémies

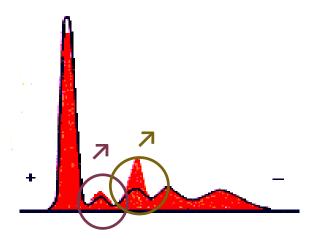
- Hypergammaglobulinémie polyclonale
- Hypergammaglobulinémie monoclonale
 - Causes:
 - Myélome multiple
 - Diag:
 - Critères CRAB (au moins 1 sur 4)
 - + Immunoglobuline monoclonale
 - + Plasmocytose médullaire > 10% (myélogramme)

1. Les hypergammaglobulinémies

- Hypergammaglobulinémie polyclonale
- Hypergammaglobulinémie monoclonale
 - Causes:
 - Myélome multiple
 - Maladie de Waldenström
 - Ne remplit pas l'ensemble des critères du myélome
 - IgM monoclonale
 - MGUS
 - Autres
 - = Monoclonal Gammapathy of Undetermined Significance

- 1. Les hypergammaglobulinémies
- 2. Le syndrome néphrotique

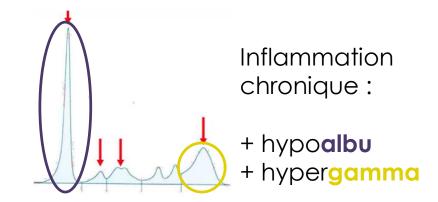
Albumine diminuée


→ Fuite urinaire d'albumine qui passe anormalement la barrière glomérulaire (albuminurie ↗)

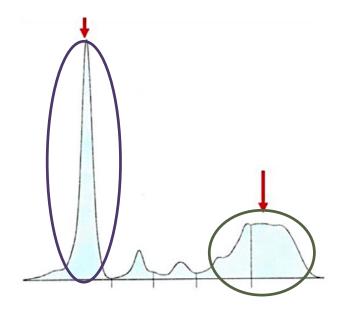
Alpha-2 augmentées

→ compensation hépatique de la pression oncotique (▶ synthèse)

Beta variable Gamma tendance à la baisse (pas toujours)


- 1. Les hypergammaglobulinémies
- 2. Le syndrome néphrotique
- 3. Syndrome inflammatoire

Augmentation des alpha-1 et des alpha-2 (protéines de l'inflammation)



<u>Stigmates du SI</u>

(éventuellement diminution des beta)

- 1. Les hypergammaglobulinémies
- 2. Le syndrome néphrotique
- 3. Syndrome inflammatoire
- 4. Insuffisance hépatocellulaire / Cirrhose éthylique

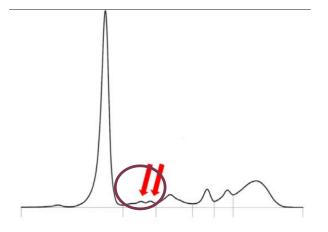
Albumine diminuée

→ Incapacité de synthèse du foie (signe insuffisance hépato-cellulaire)

Bloc bêta-gamma → cirrhose éthylique

→ Forte synthèse d'IgA et d'IgM

Eventuellement baisse des alpha-1 et 2, des beta


1. Les hypergammaglobulinémies

Autosomique récessif (SERPINA 1), 14q32.13

- 2. Le syndrome néphrotique
- 3. Syndrome inflammatoire
- 4. Insuffisance hépatocellulaire / Cirrhose éthylique
- 5. Déficit en alpha-1-antitrypsine (A1AT)
- → Atteinte hépatique en période néonatale
- → Atteinte broncho-pulmonaire (enfance/vie adulte)

Taux effondrés en alpha-1-antitrypsine (régulation de la fn des polynucléaires neutrophiles)

1 naissance sur 1600 à 5000

Albumine

- **↗**: hémoconcentration, /!\ perfusion d'albumine
- > : syndrome inflammatoire (chronique), insuffisance hépatocellulaire, perte rénale (SN), carence d'apports protéiques (> synthèse hépatique). Signe biologique de dénutrition.

Alpha 1 = Orosomucoïde et A1AT

- 7: syndrome inflammatoire, IR sévère
- 🔰 : insuffisance hépatocellulaire, déficit en alpha1-antitrypsine

Alpha 2 = haptoglobine, alpha-2-macroglobuline

- z: syndrome néphrotique, syndrome inflammatoire,
- 🔰 : insuffisance hépatocellulaire, hémolyse (consommation rapide d'haptoglobine)

Beta 1

- 7: augmentation de la transferrine : carence martiale
- 🔰 : baisse de la transferrine : surcharge en fer.

Beta 2

- 7 : augmentation d'anti-protéase d'origine hépatique dans la cholestase,
- 🕽 : consommation des protéines du complément, insuffisance hépatocellulaire, déficit congénitaux (rares).

Gamma

- 7 : cf. hypergammaglobulinémie, syndrome inflammatoire.
- > : Diverses causes d'immunodéficience (agammaglobulinémie liée à l'X, déficits combinés,...), plus rarement infections à répétitions.

ELECTROPHORESE DES PROT SERIQUES

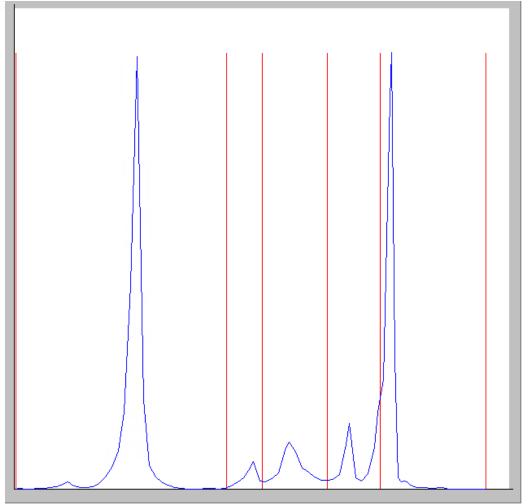
TAKE HOME MESSAGES

Chaque fraction de l'EPS = ensemble de protéines particulier (migration selon taille et pHi)

Albumine = principale protéine circulante (majoritaire à 60%), marqueur de dénutrition protéino-énergétique (1), de syndrome inflammatoire chronique (1)

Reconnaître un profil type

Mr. H, 58 ans, est hospitalisé en rhumatologie pour des explorations étiologiques de **2 fractures** vertébrales à 6 mois d'intervalle sur des chutes accidentelles. Vous retrouvez une nervosité avec une hypertonie neuromusculaire des membres, une pression artérielle à 160/90. Voici son bilan biologique


Na+	142 mmoL/L	135-145
K+	3.8 mmoL/L	3.5-4.5
CI-	96 mmoL/L	95-105
Protéines	111 g/L	
Calcium	3.44 mmoL/L	2.2-2.6
Créatinine	95 µmol/L	60-90
Urée	10 mmol/L	2.5-7.5

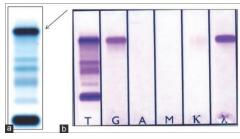
Mr. H, 58 ans, est hospitalisé en rhumatologie pour des explorations étiologiques de **2 fractures** vertébrales à 6 mois d'intervalle sur des chutes accidentelles. Vous retrouvez une nervosité avec une hypertonie neuromusculaire des membres, une pression artérielle à 160/90. Voici son bilan biologique

Na+	142 mmoL/L	135-145
K+	3.8 mmoL/L	3.5-4.5
CI-	96 mmoL/L	95-105
Protéines	111 g/L	60-80
Calcium	3.44 mmoL/L	2.2-2.6
Créatinine	95 μmol/L	60-90
Urée	10 mmol/L	2.5-7.5

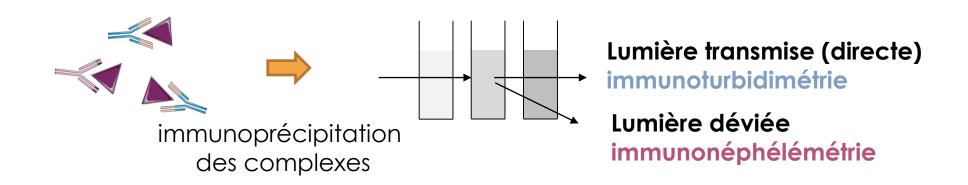
→ Hyperprotéinémie majeure

→ Hypercalcémie → à corriger et éventuellement Ca²+ ionisé Exploration de l'hyperprotéinémie par une **EPS**

Albumine %	46.9 %
Albumine g/L	38.2 g/L
A1globulines %	3.3 %
A1globulines g/L	2.7 g/L
A2globulines %	10.4 %
A2globulines g/L	8.5 g/L
Bglobulines %	11.3 %
Bglobulines g/L	9.2 g/L
G globulines %	28.1 %
G globulines g/L	22.9 g/L


Hypergammaglobulinémie avec un contingent d'allure monoclonal (pic) en zone gamma

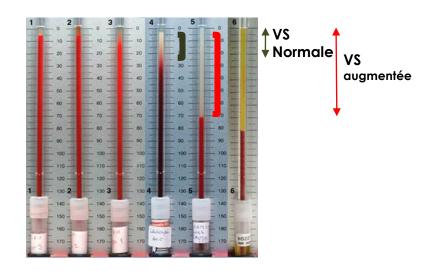
« Géodes à l'emporte pièce »


- Immunofixation pour confirmer la clonalité de l'immunglobuline présente
- Myélome ? 3 Critères CRAB

PLAN

- Métabolisme des protéines
 - Vue d'ensemble
 - Rappels
 - Absorption des protéines alimentaires
 - Protéolyse
- Examens biologiques : protéines totales
 - Généralités
 - Variations physiopathologiques
- Examens biologiques : électrophorèse des protéines plasmatiques / sériques (EPP/EPS)
 - Généralités
 - Profils classiques de l'EPS
- Examens biologiques : dosages des protéines spécifiques de l'inflammation
 - Les protéines de l'inflammation
 - Variations physiopathologiques

- Dosage de protéines spécifiques = mesurer dans un sérum ou un plasma la concentration d'une seule protéine d'intérêt.
- Méthode de dosage : Basée sur les propriétés de transmission / déviation de la lumière de complexes immuns antigène - anticorps insolubles ou fixés à une phase solide
 - Utilisation de réactifs contenant des AC spécifiques



Quelles protéines peuvent-être dosées ?

- Albumine
- Protéines de l'inflammation
 - Cf. suite de ce cours
- Protéines du métabolisme du fer
 - Transferrine, ferritine,
- Protéines de la coagulation
 - Fibrinogène, facteurs,...
- Marqueurs de pathologies hépatiques
- Marqueurs de pathologies rénales
- Marqueurs de la dénutrition protéino-énergétique

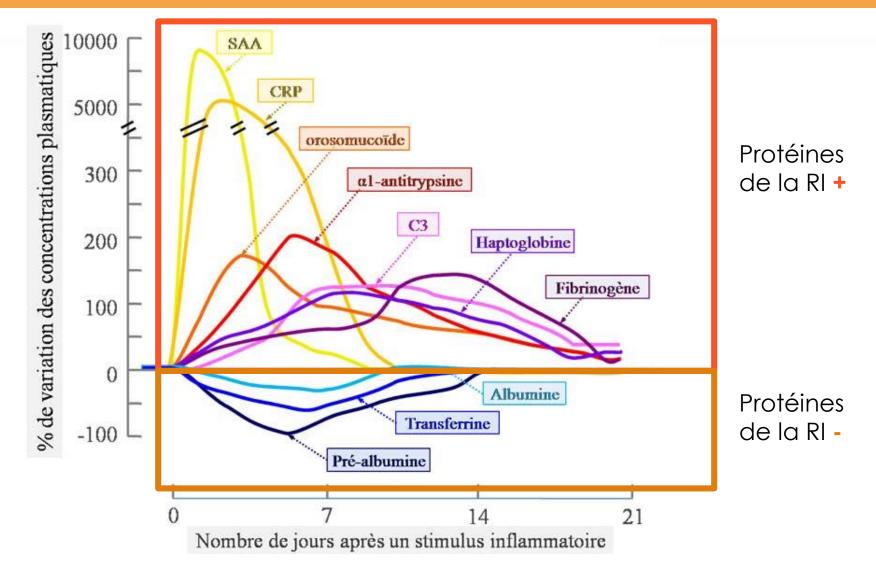
- La réaction inflammatoire (RI) = mécanisme non-spécifique de défense de l'organisme, appartenant au domaine de l'immunité innée, en réponse à une agression pouvant être
 - Exogène: agents infectieux, agressions physico-chimiques, traumatiques,...
 - Endogène: processus tumoral, ischémie tissulaire,...
- Le syndrome inflammatoire : ensemble des signes cliniques et biologiques correspondant aux manifestations de la réaction inflammatoire
 - Signes cliniques : généraux (fièvre, asthénie,...) ou locaux (rouge, chaud, tuméfié, douloureux)
 - Signes biologiques (SIB)

- Examens biologiques de la RI
 - La vitesse de sédimentation (VS) : test global
 - Tube de Westergren (dimension et matériau standardisé)
 - A partir de sang total
 - VS (à 1h) = distance (en mm) de sédimentation des globules rouges parcourus en une heure

Conséquence physique de l'augmentation des protéines de la RI De moins en moins réalisé ...

- Examens biologiques de la RI
 - La **vitesse de sédimentation (VS)** : test global Valeurs de référence:

Homme <15 mm avant 50 ans <20mm après 50 ans OU < âge (années) / 2 < a href="mailto:apre-10"> < a href=


Femme <20 mm avant 50 ans <30mm après 50 ans OU <[âge (années) + 10] / 2</pre>

grossesse, anémie, certains traitements, hypergammaglobulinémie
 sensible, mais manque de spécificité

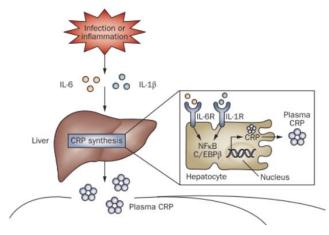
82

- Examens biologiques de la RI
 - La vitesse de sédimentation (VS): test global
 - Dosage des protéines de la RI par immunonéphélé- ou immunoturbidimétrie

Protéines de la RI +	Protéines de la RI -
Sérum amyloïde A	Pré-albumine
Procalcitonine (PCT)	Transferrine
CRP	Albumine
Orosomucoïde	
AIAT	
Protéine C3 du complément	
Haptoglobine	
Cerul(e)oplasmine	

- Examens biologiques de la RI
 - La vitesse de sédimentation (VS): test global
 - Dosage des protéines de la RI par immunonéphélé- ou immunoturbidimétrie
 - Production induite en phase aigüe par le système immunitaire inné
 - > rôle des interleukines (polynucléaires, monocytes,..)
 - > qui activent la synthèse hépatique de ces protéines

EXPLORATIONS BIOLOGIQUES : DOSAGE DES PROTÉINES SPÉCIFIQUES DE L'INFLAMMATION


• **SAA** = sérum amyloïde A

Marqueurs **précoces**

- Augmente rapidement
- Ne présente pas d'intérêt supplémentaire à la CRP (trop sensible) → pas dosée en routine clinique

• CRP = protéine C-réactive

Marqueurs **précoces**

Complexe AC-Ag → production de cytokines IL1-β et IL6

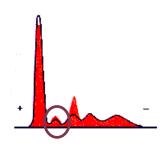
- Récepteurs hépatiques
- Synthèse et sécrétion de CRP
- Dosage très fréquent en routine ++, si besoin en urgence (24/24, immunoturbidimétrie)
- Marqueur **précoce** : Augmente rapidement en début de RI : <u>dès +8h</u>
- Demi-vie courte de 12h : utilisée en suivi de la phase aigüe
- Retour à la normale en 4 à 5 demi-vie (environ 3 jours)

Procalcitonine (PCT)

Marqueurs précoces

- **Pro-hormone** (précurseur de la calcitonine) produit dans de **nombreux tissus** (leucocytes, foie, rein, rate,...) en phase aigüe de la RI.
- Physiologiquement: < 0.05 ng/mL
- Synthèse augmentée par stimuli d'agression infectieuse
 - LPS (lipopolysaccharide bactérien)
 - Cytokines: IL6, TNFa
- Augmentation très précoce : dès +2h après début de la RI.
- Demi-vie : 24h
- Utilisé dans le sepsis (infection)
 - Marqueur assez spécifique de l'infection bactérienne (>2 ng/mL)
 - Initiation et suivi d'antibiothérapie
 - Intérêt supplémentaire à la CRP controversé actuellement
- Dosage étudié sur la plan médico-économique : coûte cher

EXPLORATIONS BIOLOGIQUES : DOSAGE DES PROTÉINES SPÉCIFIQUES DE L'INFLAMMATION


Les glycoprotéines d'origine hépatique Insuffisance hépatocellulaire : 🕥

N'augmentent qu'à +2 à 4 jours après la RI

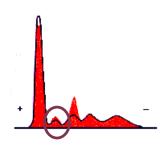
Marqueurs tardifs

Orosomucoïde

- Appelée aussi « alpha-1-glycoprotéine acide »
- Protéine de transport
- Demi-vie : 3 à 6 jours
- Marqueur utilisé pour inflammation chronique
- Insuffisance rénale : 7
- Perte rénale dans le syndrome néphrotique

EXPLORATIONS BIOLOGIQUES : DOSAGE DES PROTÉINES SPÉCIFIQUES DE L'INFLAMMATION

VARIATIONS PHYSIOPATHOLOGIQUES


Les glycoprotéines d'origine hépatique Insuffisance hépatocellulaire : 🕥

N'augmentent qu'à +2 à 4 jours après la RI

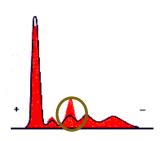
Marqueurs tardifs

A1AT

- Inhibiteur de protéase
- Demi-vie: 7 jours
- Insuffisance rénale : 7
- Peu utilisé en routine

EXPLORATIONS BIOLOGIQUES : DOSAGE DES PROTÉINES SPÉCIFIQUES DE L'INFLAMMATION

VARIATIONS PHYSIOPATHOLOGIQUES

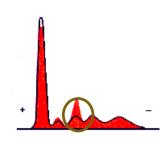

Marqueurs tardifs

Les glycoprotéines d'origine hépatique Insuffisance hépatocellulaire : 🕥

N'augmentent qu'à +2 à 4 jours après la RI

Haptoglobine

- Complexe avec l'hémoglobine libérée dans le secteur plasmatique (néphrotoxique) > effondrée en cas d'hémolyse
- Syndrome néphrotique :
- Demi-vie : 3 à 5 jours
- Intervalle de référence : 0.3-2 g/L


VARIATIONS PHYSIOPATHOLOGIQUES

Les glycoprotéines d'origine hépatique Insuffisance hépatocellulaire : 🕥

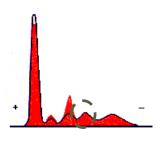
N'augmentent qu'à <u>+2 à 4 jours</u> après la RI

Alpha-2-macroglobuline

- Marqueur de suivi dans les hépatopathies chroniques
- Principal inhibiteur de protéase dans le sang
- Syndrome néphrotique : 7

Marqueurs tardifs

Céruléoplasmine


- Transporteur du cuivre
- Marqueur de pathologies héréditaires du métabolisme du Cu (Maladie de Wilson)

: 2

Marqueurs tardifs

Protéine C3 du complément

- Système complément = réponse immunitaire innée
- Synthèse par le foie (hépatocytes et macrophages du foie)
- 7 : cholestase, cirrhose biliaire primitive, RI
- 🗵 : insuffisance hépatique, consommation par « activation du complément » dans certaines pathologies infectieuses et immunitaires, déficit congénital,
- Augmente lentement et tardivement (1ère semaine après la RI, variable)

EXPLORATIONS BIOLOGIQUES : DOSAGE DES PROTÉINES SPÉCIFIQUES DE L'INFLAMMATION

Protéines du métabolisme du fer

Marqueurs tardifs

Transferrine

Diminue dans le syndrome inflammatoire!

Ferritine

Augmente dans le syndrome inflammatoire

Non utilisées dans le contexte inflammatoire en routine Cf. cours métabolisme du fer

SYNDROME INFLAMMATOIRE BIOLOGIQUE (SIB)

TAKE HOME MESSAGES

Marqueurs principaux de la RI: précoces (CRP, PCT), ou tardifs (Orosomucoïde, haptoglobine, alpha-2-macroglobuline, ceruleoplasmine)

Certains ont des intérêt spécifiques (**PCT**/sepsis bactérien) (alpha2-macroglobuline/hépatopathies chroniques), ...

L'albumine diminue dans le syndrome inflammatoire chronique

SOURCES

- Lysosomes: fusion and function, Luzio JP, Pryor PR, and Bright NA, Nature Reviews 2007
- Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction, Tai HC and Schuman E, Nature Reviews 2008
- Peaks and tails: Evaluation of irregularities in capillary serum protein electrophoresis, Regeniter, Siede WH et al., Clinical Biochemistry, 2018
- Associations of circulating second messenger glycerophosphatidylcholines with cardiovascular disease risk factors in adolescents, Thesis from Czajkowski Simon 2015
- « Approaches to determinate protein concentrations », Cusabio
- L'électrophorèse des protéines sériques : quand ? Pourquoi ? Quelle orientation et suivi ?, Escure G, Manier S, Onraed B, et al. Presse Med Form 2022
- Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy, Vijayan AL et al, Journal of intensive care 2017
- Électrophorèse des protéines sériques : principes généraux vérification de méthode interprétation, Option Bio 2013
- Closing the Gaps in Pediatric Laboratory Reference Intervals: A CALIPER Database of 40
 Biochemical Markers in a Healthy and Multiethnic Population of Children, Colantonio DA et al.,
 Clinical Chemistry 2012

•